Answer:
C. Nucleic Acids arranged in a double helix.
Explanation:
The structure of DNA is best described as a double helix. DNA has a sugar phosphate back and nucleotides connected by covalent bonds. Together, it looks like a twisted ladder which is also known the double helix.
Answer:
(a) Microfilaments
(b) Microtubules
(c) Microtubules
(d) Microfilaments
(e) Intermediate filaments
(f) Microfilaments, intermediate filaments, microtubules
(g) Microfilaments, microtubules
(h) Microfilaments, intermediate filaments, microtubules
(i) Microtubules, microfilaments
(j) Microtubules
Explanation:
Microtubules (MTs) are dimers of the protein tubulin (alpha- and beta-tubulin subunits) and they are major components of the cytoskeleton. MTs play diverse cellular roles including, mechanical support (cytoskeleton), transport, motility, chromosome segregation, etc. Microfilaments (MFs) are protein filaments that also form part of the cytoskeleton in eukaryotic cells. MFs consist of G-actin monomers assembled in linear actin polymers, and their functions include mechanical support, cytokinesis, changes in cell shape, amoeboid movement, endocytosis and exocytosis, etc. MFs associate with the protein myosin to generate muscle contractions. Actin filaments/MTs assembly from monomeric actin/tubulin is caused due to energy expenditure, where ATP/GTP bound to actin/tubulin is hydrolyzed during polymerization. Finally, intermediate filaments (IFs) are a type of cytoskeletal element composed of a heterogeneous group of structural elements, and they are not found in all eukaryotes. The primary function of the IFs is to contribute to the mechanical support for the plasma membrane where these filaments come into contact with other cells and/or with the extracellular matrix. The IFs are not directly involved in cell movement. All 3 types of cytoskeletal elements (microfilaments, intermediate filaments, microtubules) can be visualized by fluorescence microscopy when cells express chimeric MT/IF/MF.–GFP fusion proteins.
The answer is sex cells or gametes
Experimentation (or the experiments the scientist was doing for 10 years) could be wrong or done in an inappropriate way. The only way to know if the information is valid is by checking the way the experimentation (data) was done as well as making sure to check all other factors
<u>Answer</u>:
"It increases the mutation rate" is an advantage of sexual reproduction
<u>Explanation</u>:
The basic thing of evolution is fundamental, as it helps in generation of genetic variation on which the selection can act. Sexual reproduction leads to genetic diversity, and this genetic diversity leads to increase the mutation rate. Genetic diversity occurs because of two various cells which are combining together and biological assortment which happens at the time of cell division. Neutral genetic diversity in the population leads to high mutation rate.