Answer:
21
Step-by-step explanation:
So what you do is theres 12 months so multiple that by 15 and get 180 then what you do is what time 80 equals 180 and thats your answer
The slope of the line connecting two points (<em>a</em>, <em>b</em>) and (<em>c</em>, <em>d</em>) is
(<em>d</em> - <em>b</em>) / (<em>c</em> - <em>a</em>)
i.e. the change in the <em>y</em>-coordinate divided by the change in the <em>x</em>-coordinate. For a function <em>y</em> = <em>f(x)</em>, this slope is the slope of the secant line connecting the two points (<em>a</em>, <em>f(a)</em> ) and (<em>c</em>, <em>f(c)</em> ), and has a value of
(<em>f(c)</em> - <em>f(a)</em> ) / (<em>c</em> - <em>a</em>)
Here, we have
<em>f(x)</em> = <em>x</em> ²
so that
<em>f</em> (1) = 1² = 1
<em>f</em> (1.01) = 1.01² = 1.0201
Then the slope of the secant line is
(1.0201 - 1) / (1.01 - 1) = 0.0201 / 0.01 = 2.01
Answer:
Step-by-step explanation:
Given that a researcher is trying to decide how many people to survey.
We have confidence intervals are intervals with middle value as the mean and on either side margin of error.
Confidence interval = Mean ± Margin of error
Thus confidence interval width depends on margin of error.
Margin of error = 
Thus for the same confidence level and std deviation we find margin of error is inversely proportional to square root of sample size.
Hence for small n we get wide intervals.
So if sample size = 300, the researcher will get wider confidence interval
<h3>Answer:</h3>
x = 2
<h3>Explanation:</h3>
The rule for secants is that the product of segment lengths (on the same line) from the point of intersection to the points on the circle is a constant for any given point of intersection. Here, that means ...
... 3×(3+5) = 4×(4+x)
... 6 = 4+x . . . . divide by 4
... 2 = x . . . . . . subtract 4
_____
<em>Comment on this secant relationship</em>
Expressed in this way, the relationship is true whether the point of intersection is inside the circle or outside.