Answer:
In the case of a quadratic equation ax2 + bx + c = 0, the discriminant is b2 − 4ac; for a cubic equation x3 + ax2 + bx + c = 0, the discriminant is a2b2 + 18abc − 4b3 − 4a3c − 27c2.
Step-by-step explanation:
Answer:
The given statement is true because the person they did their steps correctly
a) Locate a point C so that ABC is a right triangle with m ACB ∠ = ° 90 and the measure of one of the acute angles in the triangle is 45° .
b) Locate a point D so that ABD is a right triangle with m ADB ∠ = ° 90 and
the measure of one of the acute angles in the triangle is30° .
c) Locate a point E so that ABE is a right triangle with m AEB ∠ = ° 90 and
the measure of one of the acute angles in the triangle is15° .
d) Find the distance between point C and the midpoint of segment AB .
Repeat with points D and E.
e) Suppose F is a point on the graph so that ABF is a right triangle
withm AFB ∠ =° 90 . Make a conjecture about the point F.
The points you found are the vertices of the feasible region. I agree with the first three points you got. However, the last point should be (25/11, 35/11). This point is at the of the intersection of the two lines 8x-y = 15 and 3x+y = 10
So the four vertex points are:
(1,9)
(1,7)
(3,9)
(25/11, 35/11)
Plug each of those points, one at a time, into the objective function z = 7x+2y. The goal is to find the largest value of z
------------------
Plug in (x,y) = (1,9)
z = 7x+2y
z = 7(1)+2(9)
z = 7+18
z = 25
We'll use this value later.
So let's call it A. Let A = 25
Plug in (x,y) = (1,7)
z = 7x+2y
z = 7(1)+2(7)
z = 7+14
z = 21
Call this value B = 21 so we can refer to it later
Plug in (x,y) = (3,9)
z = 7x+2y
z = 7(3)+2(9)
z = 21+18
z = 39
Let C = 39 so we can use it later
Finally, plug in (x,y) = (25/11, 35/11)
z = 7x+2y
z = 7(25/11)+2(35/11)
z = 175/11 + 70/11
z = 245/11
z = 22.2727 which is approximate
Let D = 22.2727
------------------
In summary, we found
A = 25
B = 21
C = 39
D = 22.2727
The value C = 39 is the largest of the four results. This value corresponded to (x,y) = (3,9)
Therefore the max value of z is z = 39 and it happens when (x,y) = (3,9)
------------------
Final Answer: 39