The answer is D because you can multiply the second equation by -4
we know there are 180° in π radians, how many degrees then in -3π/10 radians?
![\bf \begin{array}{ccll} degrees&radians\\ \cline{1-2} 180&\pi \\\\ x&-\frac{3\pi }{10} \end{array}\implies \cfrac{180}{x}=\cfrac{\pi }{~~-\frac{3\pi }{10}~~}\implies \cfrac{180}{x}=\cfrac{\frac{\pi}{1} }{~~-\frac{3\pi }{10}~~} \\\\\\ \cfrac{180}{x}=\cfrac{\pi }{1}\cdot \cfrac{10}{-3\pi }\implies \cfrac{180}{x}=-\cfrac{10}{3}\implies 540=-10x\implies \cfrac{540}{-10}=x \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill -54=x~\hfill](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Barray%7D%7Bccll%7D%20degrees%26radians%5C%5C%20%5Ccline%7B1-2%7D%20180%26%5Cpi%20%5C%5C%5C%5C%20x%26-%5Cfrac%7B3%5Cpi%20%7D%7B10%7D%20%5Cend%7Barray%7D%5Cimplies%20%5Ccfrac%7B180%7D%7Bx%7D%3D%5Ccfrac%7B%5Cpi%20%7D%7B~~-%5Cfrac%7B3%5Cpi%20%7D%7B10%7D~~%7D%5Cimplies%20%5Ccfrac%7B180%7D%7Bx%7D%3D%5Ccfrac%7B%5Cfrac%7B%5Cpi%7D%7B1%7D%20%7D%7B~~-%5Cfrac%7B3%5Cpi%20%7D%7B10%7D~~%7D%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B180%7D%7Bx%7D%3D%5Ccfrac%7B%5Cpi%20%7D%7B1%7D%5Ccdot%20%5Ccfrac%7B10%7D%7B-3%5Cpi%20%7D%5Cimplies%20%5Ccfrac%7B180%7D%7Bx%7D%3D-%5Ccfrac%7B10%7D%7B3%7D%5Cimplies%20540%3D-10x%5Cimplies%20%5Ccfrac%7B540%7D%7B-10%7D%3Dx%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20~%5Chfill%20-54%3Dx~%5Chfill)
Answer:

Yes, y is a function of x.

Step-by-step explanation:
For a proportional relation, the equation is given by:

where k is the unit rate of change.
We were told that, Lin's sister earns $9.6 per hour.
This means k=9.6.
We substitute to get:

We could rewrite this as

Yes, y is a function of x.
To obtain an equation describing x as a function of y, we solve for x to get:

<span>2n^3-n^2-136 :Equation:
Substitute 0 for n
</span> Simplify {20}^{3}<span> to </span><span>8000
</span>
<span>8000−<span>0<span><span>^2</span><span></span></span></span>−136
</span> Simplify <span>{0}^{2}<span></span></span><span> to </span><span>0
</span><span><span>8000−0−136
= 7864</span></span><span>
</span>