For this case, the first thing we must do is define variables:
x: first number
y: second number
We now write the system of equations:
x + y = 20
y = 2x + 35
Solving the system we have:
x = -5
y = 25
Answer:
The numbers are:
x = -5
y = 25
Let First Sphere be the Original Sphere
its Radius be : r
We know that Surface Area of the Sphere is : 4π × (radius)²
⇒ Surface Area of the Original Sphere = 4πr²
Given : The Radius of Original Sphere is Doubled
Let the Sphere whose Radius is Doubled be New Sphere
⇒ Surface of the New Sphere = 4π × (2r)² = 4π × 4 × r²
But we know that : 4πr² is the Surface Area of Original Sphere
⇒ Surface of the New Sphere = 4 × Original Sphere
⇒ If the Radius the Sphere is Doubled, the Surface Area would be enlarged by factor : 4
Answer:
60
Step-by-step explanation:
8640/60 is 144. 144 is a perfect square. 12*12 is 144
After a little manipulation, the given diff'l equation will look like this:
e^y * dy = (2x + 1) * dx.
x^2
Integrating both sides, we get e^y = 2------- + x + c, or e^y = x^2 + x + c
2
Now let x=0 and y = 1, o find c:
e^1 = 0^2 + 0 + c. So, c = e, and the solution is e^y = x^2 + x + e.