Answer:

Step-by-step explanation:
we know that
<u><em>Combinations</em></u> are a way to calculate the total outcomes of an event where order of the outcomes does not matter.
To calculate combinations, we will use the formula

where
n represents the total number of items
r represents the number of items being chosen at a time.
In this problem

substitute

simplify



<span>I think it's x=<span>419 well i could be wrong just an elementary eight year old</span></span>
the number of elements in the union of the A sets is:5(30)−rAwhere r is the number of repeats.Likewise the number of elements in the B sets is:3n−rB
Each element in the union (in S) is repeated 10 times in A, which means if x was the real number of elements in A (not counting repeats) then 9 out of those 10 should be thrown away, or 9x. Likewise on the B side, 8x of those elements should be thrown away. so now we have:150−9x=3n−8x⟺150−x=3n⟺50−x3=n
Now, to figure out what x is, we need to use the fact that the union of a group of sets contains every member of each set. if every element in S is repeated 10 times, that means every element in the union of the A's is repeated 10 times. This means that:150 /10=15is the number of elements in the the A's without repeats counted (same for the Bs as well).So now we have:50−15 /3=n⟺n=45
Answer:
y = k/(x+2) squared
substitute y and x to find the value of k.
k =50
nxt used the value of k with same formula:.
y= 50/ (8+2) squared
y =1/2
Answer:
x = -19; y = 25/3
Step-by-step explanation:
Step 1: solve the equation with only one variable
Isolate the variable (x)
x + 10 = -9
x = -9 - 10
x = -19
Step 2: input new information into the other equation
If x = -19, then:
2(-19) - 6y = 12
Isolate the variable (y)
-38 - 6y = 12
-6y = 12 + 38
-6y = 50
y = 50 ÷ 6
y = 50/6
Simplify
y = 25/3