X² + x - 12 / x² - x - 20 ÷ 3x² - 24x + 45 / 12x² - 48x - 60
x² + x - 12 / x² - x - 20 * 12x² - 48x - 60 / 3x² - 24x + 45
<u>(x² + x - 12)(12x² - 48x - 60)</u>
(x² - x - 20)(3x² - 24x + 45)
<span><u>12x^4 - 48x³ - 60x² + 12x³ - 48x² - 60x - 144x² + 576x + 720</u>
</span>3x^4 - 24x³ + 45x² - 3x³ + 24x² - 45x - 60x² + 480x - 900
<span>
<u>12x^4 - 48x³ + 12x³ - 60x² - 48x² - 144x² - 60x + 576x + 720</u></span>
3x^4 - 24x³ - 3x³ + 45x² + 24x² - 60x² - 45x + 480x - 900
<u>12x^4 - 36x³ - 252x² + 516x + 720</u>
3x^4 - 27x³ + 9x² + 435x - 900
<u>12(x^4 - 3x³ - 21x² + 43x + 60) </u>
3(x^4 - 9x³ + 3x² + 145x + 300)
<u>4(</u><span><u>x^4 - 3x³ - 21x² + 43x + 60) </u>
</span><span> (x^4 - 9x³ + 3x² + 145x + 300)</span>
Let
x,y, and z the long sides of the triangle
we know that
x+y+z=170 ft------> equation 1
x/y=25/14----> y=14x/25------> equation 2
y/z=14/12-----> equation 3
x/z=25/12----> z=12x/25------> equation 4
substitute equation 2 and equation 4 in equation 1
x+[14x/25]+[12x/25]=170------> multiply by 25 both sides
25x+14x+12x=4250
51x=4250
x=4250/51
x=250/3
y=14x/25------> y=(250/3)*(14/25)----> y=140/3
z=12y/14-----> (140/3)*12/14----> z=40
Using Heron's formula,
Area of the triangle = √s (s-a) (s-b) (s-c)
where s is the semiperimeter
s=170/2-----> s=85 ft
Area=√85*[85-250/3]*[85-140/3]*[85-40]
Area=9.22*[1.67]*[38.33]*[45]------> Area=26558.21 ft²
the answer is
26558.21 ft²
Answer:
y=x+1
Step-by-step explanation:
As you can see, the slope is clearly 1 and the line starts at (0, 1), which is its y-intercept.
Plug the variables into this formula: y=mx+b, then you will get y=x+1.
The answer is -3 because:
A negative times a postive stays negative and also:
the variable "x" has an invisible one in front of it, so,
-1 x 3 = -3
Hope this helps :)