Okay, so a general rule for finding perpendicular lines in the form of y = mx + b is y = (-1/m) + b.
First, let's ignore b (-7) because we're going to find that later.
A perpendicular line to y = 4x + b is y = -1/4x + b.
Alright, so now let's plug in the values. They are in the form of (x,y), so let's plug them in accordingly.
3 = -1/4(4) + b
3 = -1 + b
b = 4
y = -1/4x + 4
So a line perpendicular to y = 4x - 7 is y = -1/4x + 4.
(2x-3)(x+4) —> x= 3/2 x= -4
X=2
its x=2 because you have to divide -20x by -40 so the two negatives cancel out each other and then you get 2.
Answer:
w = 60
Step-by-step explanation:
the midsegment SU is half the measure of side RV, then
SU = RV , so
w - 30 = w ( multiply through by 2 to clear the fraction )
2w - 60 = w ( subtract w from both sides )
w - 60 = 0 ( add 60 to both sides )
w = 60
False.
y= 3(1)+1= 4
y= 3(2)+1=7 not 5
y= 3(3)+1=10 not 6