Answer:
(E) I, II and III
Step-by-step explanation:
Given,
[email protected] = a + b - ab ∀ a, b ∈ Z ( set of all integers ),
For solving this question we need to remember the following properties of integers:
I. [email protected] = a + b - ab,
[email protected] = b + a - ba = a + b - ab
Thus, [email protected] = [email protected]
II. [email protected] = a + 0 - a × 0
= a + 0 - 0
= a
III. ([email protected])@c = ([email protected])+c - ([email protected])c
= (a + b - ab) + c - (a + b - ab)c
= a + b - ab + c - ac - bc + abc
= a + b + c - ab - bc - ac + abc,
Now, [email protected]([email protected]) = [email protected]( b + c - bc )
= a + (b + c - bc) - a(b+c - bc)
= a + b + c - bc - ab - ac + abc
= a + b + c - ab - bc - ac + abc.
Thus, ([email protected])@c = [email protected]([email protected])
x = -2
<u><em>First, you need to subtract 8x from both sides:</em></u>
8x – 4 = 13x + 6
-8x -8x
____________
-4 = 5x + 6
<em><u>Then, subtract 6 from both sides:</u></em>
-6 - 6
________
-10 = 5x
<u><em>Lastly, divide both sides by 5:</em></u>
-2 = x
2x2 - 5x - 12 = 0.
(2x + 3)(x - 4) = 0.
2x + 3 = 0 or x - 4 = 0.
x = -3/2, or x = 4.
5-3=2
53+3(2)
53+6
=59