1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Snezhnost [94]
3 years ago
8

If Triangle J K L is congruent to Triangle B C A, which statement must be true?

Mathematics
2 answers:
Blizzard [7]3 years ago
5 0

Answer:

JKL=BCA

Step-by-step explanation:

ale4655 [162]3 years ago
5 0

Answer: c : JL-BA

Step-by-step explanation:

You might be interested in
If mBAC = 25°, then mCAD = ?
Anit [1.1K]
It would also be 25 degrees
8 0
3 years ago
Please whats the answer to this question
Shkiper50 [21]
I believe it’s 800 cm^3
4 0
2 years ago
Read 2 more answers
En said the value of the expression 72-8^2 +6*3 is 50. What mistake did Ben make? Correct Ben’s mistake and give the value of th
posledela

Given:

72-\frac{8}{2}+6\times3

He does mistake in the order of giving preference.

We should give preference in the order, division, multiplication, addition, subtraction.

But, he gave the first preferrence to the subtraction.

72-8=64

Next, he used division

64/2=32

Next he adds 32 with 8.

So, he gets 50.

But the actual simplification is,

Simplifying we get,

\begin{gathered} 72-\frac{8}{2}+6\times3=72-4+18 \\ =68+18 \\ =86 \end{gathered}

Hence, the correct value of the expression is 86.

7 0
1 year ago
What is y=−29x 3 in standard form using integers?
cupoosta [38]
<span>add 2/9x to both sides, if you do that you get 2/9x+y=3. If you want to simplify it multiply everything by the denominator, in this case, 9 so then you would have 2x+9y=27 

Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
</span>
4 0
2 years ago
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
Other questions:
  • How do I translate the product of h and 4 is subtracted from one-fifth of x is 35 to an equation?
    14·1 answer
  • Fred buys flags from a manufacturer for (unknown) dollars each then sells the flags in his store for a 26% markup.
    13·2 answers
  • What is 427.37.+5,348.18
    5·1 answer
  • Evaluate the expression. <br><br> (−3)3 + (5 − 2)4<br><br> HALLLPPPPPP MEEEE
    8·2 answers
  • The value of y varies directly as x, with a constant of variation of -8. What is the value of y when x is 7?
    9·2 answers
  • Please help me on the question on the bottom
    5·2 answers
  • A lorry is travelling at 13.5m/s along a stretch of road​
    11·1 answer
  • PLEASE HELP ME FAST PLEASE HELP ME
    6·1 answer
  • 12%of72 is what number
    15·1 answer
  • What are the steps to solve 5m-8=3m+8
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!