Answer:
(x-1)^2 + (y-4)^2 = 5^2
Step-by-step explanation:
Using the standard equation of a circle with center at (h, k) and radius r:
(x-h)^2 + (y-k)^2 = r^2, we substitute 1 for h, 4 for k, 4 for x and 8 for y:
(4-1)^2 + (8-4)^2 = r^2, or
9 + 16 = 25 = r^2
Thus, the radius is 5
and the equation is (x-1)^2 + (y-4)^2 = 5^2. This matches the 2nd answer choice.
Answer: the answer to this solution is 8.04
Answer: 2 lbs of cherries
Cherries = $5 per pound
Oranges = $2 per pound
Total Cost = $18
Total weight = 6 lb
------------------------------------
Define x and y
------------------------------------
Let x be the number of lb of cherries
Let y be the number of lb of oranges
------------------------------------
Construct equations
------------------------------------
x + y = 6 ---------------------------- (1)
5x + 2y = 18 ---------------------------- (2)
------------------------------------------------------------------------
Solve x and y
------------------------------------------------------------------------
From equation (1):
x + y = 6
x = 6 - y
------------------------------------------------------------------------
Substitute x = 6 - y into equation 2
------------------------------------------------------------------------
5x + 2y = 18
5 (6 - y) + 2y = 18
30 - 5y + 2y = 18
3y = 30 - 18
3y = 12
y = 4
------------------------------------------------------------------------
Substitute y = 4 into equation (1)
------------------------------------------------------------------------
x + y = 6
x + 4 = 6
x = 2
------------------------------------------------------------------------
Find the weight of cherries and oranges
------------------------------------------------------------------------
Cherry = x = 2 lb
Oranges = y = 4 lbs
------------------------------------------------------------------------
Answer: Alex bought 2 lb of cherries
------------------------------------------------------------------------
Answer:
30
Step-by-step explanation:
I would say D, determine if it can be factored by grouping (sorry, I forgot to put in the answer here).