Let x = small number
y=large numebr
x+y = 90
y-4x=15
substitute
we get:
x=21
y=90-21 = 69
First, you must know these formula d(e^f(x) = f'(x)e^x dx, e^a+b=e^a.e^b, and d(sinx) = cosxdx, secx = 1/ cosx
(secx)dy/dx=e^(y+sinx), implies <span>dy/dx=cosx .e^(y+sinx), and then
</span>dy=cosx .e^(y+sinx).dx, integdy=integ(cosx .e^(y+sinx).dx, equivalent of
integdy=integ(cosx .e^y.e^sinx)dx, integdy=e^y.integ.(cosx e^sinx)dx, but we know that d(e^sinx) =cosx e^sinx dx,
so integ.d(e^sinx) =integ.cosx e^sinx dx,
and e^sinx + C=integ.cosx e^sinxdx
finally, integdy=e^y.integ.(cosx e^sinx)dx=e^2. (e^sinx) +C
the answer is
y = e^2. (e^sinx) +C, you can check this answer to calculate dy/dx
Answer:
x = 4
Step-by-step explanation:
10 = -1/4 x + 11
10 - 11 = -1/4 x
-1 = - 1/4 x
x = 4
Answer:
m = 2
Step-by-step explanation:
The number is positive because the line goes upward 2 units and right 1 unit.