1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Usimov [2.4K]
3 years ago
5

Order these numbers from least to greatest.

Mathematics
1 answer:
Lorico [155]3 years ago
6 0

Answer:

1. -√19   2. 4.56   3. √21   4. 23/5

Step-by-step explanation:

You might be interested in
Find two numbers between 100 and 150 that have a GCF of 24.
tino4ka555 [31]

Answer:

120 and 144

Step-by-step explanation:

Keep adding 24 to 96

8 0
3 years ago
Mutations happen at a steady rate.<br><br> True<br><br> False
hram777 [196]
False, mutations occur at varying rates
6 0
3 years ago
What is the probability of getting a 4 each time if a die is rolled 3 times
Mandarinka [93]
The probability is <span>5.55555555555556% or rounded is 6%.</span>
8 0
3 years ago
The College Board SAT college entrance exam consists of three parts: math, writing and critical reading (The World Almanac 2012)
Wittaler [7]

Answer:

Yes, there is a difference between the population mean for the math scores and the population mean for the writing scores.

Test Statistics =   \frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } } follows t_n_-  _1 .

Step-by-step explanation:

We are provided with the sample data showing the math and writing scores for a sample of twelve students who took the SAT ;

Let A = Math Scores ,B = Writing Scores  and D = difference between both

So, \mu_A = Population mean for the math scores

       \mu_B = Population mean for the writing scores

 Let \mu_D = Difference between the population mean for the math scores and the population mean for the writing scores.

            <em>  Null Hypothesis, </em>H_0<em> : </em>\mu_A = \mu_B<em>     or   </em>\mu_D<em> = 0 </em>

<em>      Alternate Hypothesis, </em>H_1<em> : </em>\mu_A \neq  \mu_B<em>      or   </em>\mu_D \neq<em> 0</em>

Hence, Test Statistics used here will be;

            \frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } } follows t_n_-  _1    where, Dbar = Bbar - Abar

                                                               s_D = \sqrt{\frac{\sum D_i^{2}-n*(Dbar)^{2}}{n-1}}

                                                               n = 12

Student        Math scores (A)          Writing scores (B)         D = B - A

     1                      540                            474                                   -66

     2                      432                           380                                    -52  

     3                      528                           463                                    -65

     4                       574                          612                                      38

     5                       448                          420                                    -28

     6                       502                          526                                    24

     7                       480                           430                                     -50

     8                       499                           459                                   -40

     9                       610                            615                                       5

     10                      572                           541                                      -31

     11                       390                           335                                     -55

     12                      593                           613                                       20  

Now Dbar = Bbar - Abar = 489 - 514 = -25

 Bbar = \frac{\sum B_i}{n} = \frac{474+380+463+612+420+526+430+459+615+541+335+613}{12}  = 489

 Abar =  \frac{\sum A_i}{n} = \frac{540+432+528+574+448+502+480+499+610+572+390+593}{12} = 514

 ∑D_i^{2} = 22600     and  s_D = \sqrt{\frac{\sum D_i^{2}-n*(Dbar)^{2}}{n-1}} = \sqrt{\frac{22600 - 12*(-25)^{2} }{12-1} } = 37.05

So, Test statistics =   \frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } } follows t_n_-  _1

                            = \frac{-25 - 0}{\frac{37.05}{\sqrt{12} } } follows t_1_1   = -2.34

<em>Now at 5% level of significance our t table is giving critical values of -2.201 and 2.201 for two tail test. Since our test statistics doesn't fall between these two values as it is less than -2.201 so we have sufficient evidence to reject null hypothesis as our test statistics fall in the rejection region .</em>

Therefore, we conclude that there is a difference between the population mean for the math scores and the population mean for the writing scores.

8 0
3 years ago
The ________ of an angle is a segment or a ray that passes through the vertex of an angle and splits it into two congruent angle
Yakvenalex [24]
Bisector is the correct answer  <span />
4 0
3 years ago
Other questions:
  • A gardener wants to run a border around the outside of her garden. She plots it on a grid to plan how much she will need. The ga
    8·1 answer
  • Can someone help me with this geometry question I don’t understand it
    10·1 answer
  • Help me please Idk what to do
    15·1 answer
  • What expression gives the distance between the points 5,1 and 9,-6
    8·1 answer
  • Find the solution of y = –2x + 3 for x = 2.
    9·2 answers
  • Write a number with a 2 in it that is 10 times the value of the 2 in this number:<br> 54,263.045
    12·2 answers
  • Question 11
    7·1 answer
  • A margin of error tells us how often the confidence interval estimates the parameter incorrectly. how often a confidence interva
    6·1 answer
  • Your grades on three exams are 80, 93, and 91. What grade do you need on the next exam to have an average of 88 on all four exam
    10·1 answer
  • Estimate 26 to the nearest tenth. Then locate 26 on a number line.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!