Answer: facilitate the transport of substances across a cell membrane.
Explanation:
Trees are a crucial part of the<span> carbon cycle</span>, a global process in which carbon dioxide constantly circulates through the atmosphere into organism and back again. Carbon is the second most valuable element to life, you know, after water. Anyway, trees take carbon from the atmosphere through <span>photosynthesis </span>in order to make energy. This carbon is then either transferred into oxygen and released into the air by <span>respiration </span>or is stored inside the trees until they decompose into the soil. Therefore, the absence of trees would result in significantly HIGHER amounts of carbon dioxide in the air and LOWER amounts of oxygen! The filthy air would also be full of airborne particles andpollutants like carbon monoxide, sulfur dioxide and nitrogen dioxide and its temperature may increase by up to 12 F.
No they don’t, but to be able to have cellular respiration it can perform aerobic cellular respiration. These cells will move electrons back and forth across their cell membrane. Other types of prokaryotes cannot use oxygen to perform cellular respiration, so they perform anaerobic respiration.
Prokaryotes are single-celled organisms of the domains Bacteria and Archaea. All prokaryotes have plasma membranes, cytoplasm, ribosomes, a cell wall, DNA, and lack membrane-bound organelles. Many also have polysaccharide capsules. Prokaryotic cells range in diameter from 0.1–5.0 µm.
Like a prokaryotic cell, a eukaryotic cell has a plasma membrane, cytoplasm, and ribosomes, but a eukaryotic cell is typically larger than a prokaryotic cell, has a true nucleus (meaning its DNA is surrounded by a membrane), and has other membrane-bound organelles that allow for compartmentalization of functions. Eukaryotic cells tend to be 10 to 100 times the size of prokaryotic cells.