The Tangent Line Problem 1/3How do you find the slope of the tangent line to a function at a point Q when you only have that one point? This Demonstration shows that a secant line can be used to approximate the tangent line. The secant line PQ connects the point of tangency to another point P on the graph of the function. As the distance between the two points decreases, the secant line becomes closer to the tangent line.
Angle D is 180° -75° -45° = 60°. Drawing altitude MX to segment DN divides the triangle into ΔMDX, a 30°-60°-90° triangle, and ΔMNX, a 45°-45°-90° triangle. We know the side ratios of such triangles (shortest-to-longest) are ...
... 30-60-90: 1 : √3 : 2
... 45-45-90: 1 : 1 : √2
The long side of ΔMDX is 10√3, so the other two sides are
... MX = MD(√3/2) = 15
... DX = MD(1/2) = 5√3
The short side of ΔMNX is MX = 15, so the other two sides are
... NX = MX(1) = 15
... MN = MX(√2) = 15√2
Then the perimeter of ΔDMN is ...
... P = DM + MN + NX + XD
... P = 10√3 +15√2 + 15 + 5√3
... P = 15√3 +15√2 +15 . . . . perimeter of ΔDMN
LolAnswer:
Step-by-step explanation:
10,000 tiles * 0.25 = 2500
3000 -2500 = 500
so the delivery fee is 500 and the tiles cost 0.25 each
so the equation would be y = 0.25x +500
Answer is C