Given that a<span>
gas station operates two pumps, each of which can pump up to 10,000
gallons of gas in a month and that the total of gas pumped at the station in a
month is a random variable y (measured in 10,000 gallons) with a
probability density function (p.d.f.) given by

Part A:
The value of c that makes f(y) a pdf is obtained as follows:
![F(\infty)= \int\limits^{\infty}_{-\infty} {f(y)} \, dy=1 \\ \\ \Rightarrow \int\limits^1_0 {cy} \, dy +\int\limits^2_1 {(2-y)} \, dy=1 \\ \\ \Rightarrow \left. \frac{cy^2}{2} \right]^1_0+\left[2y- \frac{y^2}{2} \right]^2_1=1 \\ \\ \Rightarrow \frac{c}{2} +4-2-2+ \frac{1}{2} =1 \\ \\ \Rightarrow \frac{c}{2} = \frac{1}{2} \\ \\ \Rightarrow \bold{c=1}](https://tex.z-dn.net/?f=F%28%5Cinfty%29%3D%20%5Cint%5Climits%5E%7B%5Cinfty%7D_%7B-%5Cinfty%7D%20%7Bf%28y%29%7D%20%5C%2C%20dy%3D1%20%20%5C%5C%20%20%5C%5C%20%5CRightarrow%20%5Cint%5Climits%5E1_0%20%7Bcy%7D%20%5C%2C%20dy%20%2B%5Cint%5Climits%5E2_1%20%7B%282-y%29%7D%20%5C%2C%20dy%3D1%20%5C%5C%20%20%5C%5C%20%5CRightarrow%20%5Cleft.%20%5Cfrac%7Bcy%5E2%7D%7B2%7D%20%5Cright%5D%5E1_0%2B%5Cleft%5B2y-%20%5Cfrac%7By%5E2%7D%7B2%7D%20%5Cright%5D%5E2_1%3D1%20%5C%5C%20%20%5C%5C%20%5CRightarrow%20%20%5Cfrac%7Bc%7D%7B2%7D%20%2B4-2-2%2B%20%5Cfrac%7B1%7D%7B2%7D%20%3D1%20%5C%5C%20%20%5C%5C%20%5CRightarrow%20%5Cfrac%7Bc%7D%7B2%7D%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%20%5C%5C%20%20%5C%5C%20%5CRightarrow%20%5Cbold%7Bc%3D1%7D%20)
Part B:
We compute E(y) as follows:
![E(y)=\int\limits^{\infty}_{-\infty} {yf(y)} \, dy \\ \\ =\int\limits^1_0 {y^2} \, dy +\int\limits^2_1 {(2y-y^2)} \, dy \\ \\ =\left. \frac{y^3}{3} \right]^1_0+\left[y^2- \frac{y^3}{3} \right]^2_1 \\ \\ = \frac{1}{3} +4- \frac{8}{3} -1+ \frac{1}{3} \\ \\ =1](https://tex.z-dn.net/?f=E%28y%29%3D%5Cint%5Climits%5E%7B%5Cinfty%7D_%7B-%5Cinfty%7D%20%7Byf%28y%29%7D%20%5C%2C%20dy%20%5C%5C%20%20%5C%5C%20%3D%5Cint%5Climits%5E1_0%20%7By%5E2%7D%20%5C%2C%20dy%20%2B%5Cint%5Climits%5E2_1%20%7B%282y-y%5E2%29%7D%20%5C%2C%20dy%20%5C%5C%20%20%5C%5C%20%3D%5Cleft.%20%5Cfrac%7By%5E3%7D%7B3%7D%20%5Cright%5D%5E1_0%2B%5Cleft%5By%5E2-%20%5Cfrac%7By%5E3%7D%7B3%7D%20%5Cright%5D%5E2_1%20%5C%5C%20%20%5C%5C%20%3D%20%5Cfrac%7B1%7D%7B3%7D%20%2B4-%20%5Cfrac%7B8%7D%7B3%7D%20-1%2B%20%5Cfrac%7B1%7D%7B3%7D%20%20%5C%5C%20%20%5C%5C%20%3D1)
Therefore, E(y) = 1.
</span>
Easy :).
Remove the flat rate to see how much money she has to spend: 10 - 1.95 = 8.15.
We have 8.15 (remaining money) / 0.60 (per mile) = 13 miles (or <span>13.5833333333 [copy pasted from a calculator moderators] but I assume you want a rounded version)</span>
Answer:

Step-by-step explanation:

Answer:
Interference for regression
Explanation:
Interference for regression is the most suitable statistical test to use to find out if there is any link between number of missed classes and the final test scores.
Because those two variables are related and student test score can be predicted using number of classes that are missed.
Answer:
26.
Step-by-step explanation:
As the vertex angles are equal:
24/54 = x / x+10
54x = 24x + 240
30x = 240
x = 8
So EG = x + x + 10
= 8 + 8 + 10
= 26..