1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vladimir2022 [97]
2 years ago
13

135 miles on 4 gallons of gas

Mathematics
2 answers:
victus00 [196]2 years ago
5 0
You get the answer by dividing 135 by 4
So the answer is 33.3
8_murik_8 [283]2 years ago
3 0
To find out how many miles 1 gallon of gas uses we will divide.

135 ÷ 4 = <span>33.75

Check our work:-

33.75 </span>× 4 = 135

So, <span>33.75 miles per gallon.

Hope I helped ya!!</span>
You might be interested in
A cup of coffee at 85 degrees Celsius is placed in a room at 25 degrees Celsius. Suppose that the coffee cools at a rate of 5 de
bezimeni [28]

Answer: k = - 6.6667

Step-by-step explanation:

this is quite very simple to begin. I would encourage you take other practice questions similar to help with understanding it.

let us begin.

Given that ;

dT/dt = k ( Tm - T)       where Tm is the temp of the medium

dT/dt = 5 degrees Celsius per minute    when T = 70

so we have that, 5 = k ( 25 - 70)

remember to convert 5 degree celsius per minute to seconds

we have that;

5*60(sec) = k ( 25 - 70)  

k = 5*60 / ( 25 - 70)

k = - 6.6667

note K is negative because we consider it for cooling process  (temp decreasing).

cheers i hope this helps!!!

3 0
2 years ago
2067 Supp Q.No. 2a Find the sum of all the natural numbers between 1 and 100 which are divisible by 5. Ans: 1050 ​
Alborosie

5

Answer:

1050

Step-by-step explanation:

Natural Numbers are positive whole numbers. They aren't negative, decimals, fractions. We can just divide 5 into 100 to find how many natural numbers go up to 100 and just add them but that is just to much.

There is a easier method.

<em>E.g</em><em>:</em><em> </em><em> </em><em>Natural</em><em> </em><em>N</em><em>umbers</em><em> </em><em>that</em><em> </em><em>are</em><em> </em><em>divisible</em><em> </em><em>by</em><em> </em><em>a</em><em> </em><em>N</em><em>t</em><em>h</em><em> </em><em>Number</em><em>.</em><em> </em><em>is</em><em> </em><em>the</em><em> </em><em>same</em><em> </em><em>as</em><em> </em><em>adding</em><em> </em><em>t</em><em>h</em><em>e</em><em> </em><em>Nth</em><em> </em><em>Numbers</em><em> </em><em> </em><em>to a</em><em> </em><em>multiple</em><em> </em><em>of</em><em> </em><em>that</em><em> </em><em>Nth</em><em> </em><em>Term</em><em>.</em><em> </em><em>For</em><em> </em><em>example</em><em>,</em><em> </em><em>let</em><em> </em><em>say</em><em> </em><em>we</em><em> </em><em>need</em><em> </em><em>to</em><em> </em><em>find</em><em> </em><em>numbers</em><em> </em><em>divisible</em><em> </em><em>by</em><em> </em><em>2</em><em>.</em><em> </em><em>We</em><em> </em><em>know</em><em> </em><em>that</em><em> </em><em>4</em><em> </em><em>is</em><em> </em><em>divisible</em><em> </em><em>by</em><em> </em><em>2</em><em> </em><em>because</em><em> </em><em>4</em><em>/</em><em>2</em><em>=</em><em>2</em><em>.</em><em> </em><em> </em><em>We</em><em> </em><em>can</em><em> </em><em>add</em><em> </em><em>the</em><em> </em><em>Nth</em><em> </em><em>numbers</em><em> </em><em>which</em><em> </em><em>is</em><em> </em><em>2</em><em> </em><em>to</em><em> </em><em>4</em><em>.</em><em> </em><em>4</em><em>+</em><em>2</em><em>=</em><em>6</em><em>.</em><em> </em><em>And</em><em> </em><em>6</em><em> </em><em>is</em><em> </em><em>divisible</em><em> </em><em>by</em><em> </em><em>2</em><em> </em><em>because</em><em> </em><em>6</em><em>/</em><em>2</em><em>=</em><em>3</em><em>.</em><em> </em><em>We</em><em> </em><em>can</em><em> </em><em>call</em><em> </em><em>this</em><em> </em><em>a</em><em> </em><em>arithmetic</em><em> </em><em>series</em><em>.</em><em> </em><em>A</em><em> </em><em>series</em><em> </em><em>which</em><em> </em><em>has</em><em> </em><em>a</em><em> </em><em>pattern</em><em> </em><em>of</em><em> </em><em>adding</em><em> </em><em>a</em><em> </em><em>common</em><em> </em><em>difference</em>

<em>Back</em><em> </em><em>to</em><em> </em><em>the</em><em> </em><em>problem</em><em>,</em><em> </em><em>we</em><em> </em><em>can</em><em> </em><em>use</em><em> </em><em>the</em><em> </em><em>sum</em><em> </em><em>of</em><em> </em><em>arithmetic</em><em> </em><em>series</em><em> </em><em>formula</em><em>,</em>

<em>y = x( \frac{z {}^{1}  +  {z}^{n} }{2} )</em>

<em>Where</em><em> </em><em>x</em><em> </em><em>is</em><em> </em><em>the</em><em> </em><em>number</em><em> </em><em>of</em><em> </em><em>terms</em><em> </em><em>in</em><em> </em><em> </em><em>our</em><em> </em><em>sequence</em><em>.</em><em> </em><em>Z1</em><em> </em><em>is</em><em> </em><em>the</em><em> </em><em>fist</em><em> </em><em>term</em><em> </em><em>of</em><em> </em><em>our</em><em> </em><em>series</em><em>.</em><em> </em><em> </em><em>ZN</em><em> </em><em>is</em><em> </em><em>our</em><em> </em><em>last</em><em> </em><em>term</em><em>.</em><em> </em><em>And</em><em> </em><em>y</em><em> </em><em>is</em><em> </em><em>the</em><em> </em><em>sum</em><em> </em><em>of</em><em> </em><em>all</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>terms</em><em> </em>

<em>The</em><em> </em><em>first</em><em> </em><em>term</em><em> </em><em>is</em><em> </em><em>5</em><em>,</em><em> </em><em>the</em><em> </em><em>numbers</em><em> </em><em>of</em><em> </em><em>terms</em><em> </em><em>being</em><em> </em><em>added</em><em> </em><em>is</em><em> </em><em>2</em><em>0</em><em> </em><em>because</em><em> </em><em>1</em><em>0</em><em>0</em><em>/</em><em>5</em><em>=</em><em>2</em><em>0</em><em>.</em><em> </em><em>The</em><em> </em><em>last</em><em> </em><em>term</em><em> </em><em>is</em><em> </em><em>1</em><em>0</em><em>0</em><em>.</em>

<em>y = 20( \frac{5 + 100}{2} )</em>

<em>y = 20( \frac{105}{2} )</em>

<em>y = 1050</em>

5 0
2 years ago
The example of a beach ball with a ping pong ball inside of it can be used to imagine the relationship between what two entities
Nookie1986 [14]

The celestial sphere and Earth is the example of a beach ball with a ping pong ball inside of it can be used to imagine the relationship between what two entities.

The heavenly sphere is what Why is this old idea still relevant today?

  • Ancient people used the celestial sphere to describe the visible universe.
  • Although our understanding of the cosmos has changed, the concept of a celestial sphere is still prevalent because it provides a straightforward perspective on the stars that is useful for navigation.

Which phrase most accurately sums up the celestial sphere?

The entire sky as seen from Earth is portrayed by the celestial sphere. Keep in mind that the celestial sphere is intended to depict the sky as it appears from our planet rather than physical reality.

Learn more about celestial sphere

brainly.com/question/13196153

#SPJ4

3 0
1 year ago
An appliance manufacturer wants to contract with a repair shop to handle authorized repairs in Indianapolis. The company has set
jeyben [28]

The best firm for the Appliance manufacturer for the repair work is Firm 2 .

In the question ,

it is given that ,

An appliance manufacturer wants to contract with a repair shop to handle authorized repairs in Indianapolis .

The acceptable range of the repair time is 50 minutes to 90 minutes.

the mean repair time for firm 1 = 74 minutes and standard deviation of 4 minutes .

the mean repair time for firm 2 = 72 minutes and standard deviation of 5.1 minutes .

the range is calculated using the formula

Range = Mean ± Standard Deviation

So , for firm 1 ,

the Range = 74 ± 4

= 74 + 4       and      74 - 4

= 78     and   70

the range for firm 2 is

= 72 ± 5.1

= 72 + 5.1      and      72 - 5.1

= 7.1        and       66.9  

The second company has a lower range and it should be preferred .

Therefore ,  The best firm for the Appliance manufacturer for the repair work is Firm 2 .

Learn more about Standard Deviation here

brainly.com/question/23611887

#SPJ1

8 0
8 months ago
If $525 is 40% of my take home pay for 1 week how much to I make in a week
Vlada [557]

Answer: 525=2/5 so 1/5=262.5 and multiply that by 3 is 787.5 2/5 plus 3/5 is 100% so you would make 787.5

Step-by-step explanation:

8 0
2 years ago
Read 2 more answers
Other questions:
  • Using the graph of f(x) = log2x below, approximate the value of y in the equation 22y = 5.
    8·2 answers
  • What is –9.2(8x – 4) + 0.7(2 + 6.3x) simplified? A:–69.19x – 32.39 B:–69.19x + 38.2 C:–72.2x + 41.21 D:75x – 338.2
    15·2 answers
  • Convert 17/34 to decimal using long division
    12·1 answer
  • unit price—- a long distance phone charge of $1.40 for 10 minutes, or $4.50 for 45 minutes —- show work^
    15·1 answer
  • Aljabra. <br><img src="https://tex.z-dn.net/?f=x%20%20%5Cdiv%2012%20-%203x%20-%201%20%5Cdiv%208%20%3D%201" id="TexFormula1" titl
    6·1 answer
  • Approximate: log5 ^4/7
    11·1 answer
  • . Micah has 294 songs stored in his phone, which is 70% of the songs that George has stored in his phone. How many songs are sto
    13·1 answer
  • The Cumulative number (in thousands) of deaths from a certain disease from 2000 to 2010 may be modeled by A=2.39x2+5.04x+5.1, wh
    13·1 answer
  • Can anyone help me I did it I'm just checking :)
    8·1 answer
  • The radius of the dinner table is 12.5mm calculate the area of the dinner table by using 3.14 to two decimal places
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!