Answer:
9964
Step-by-step explanation:
<span>Ayesha's right. There's a good trick for knowing if a number is a multiple of nine called "casting out nines." We just add up the digits, then add up the digits of the sum, and so on. If the result is nine the original number is a multiple of nine. We can stop early if we recognize if a number along the way is or isn't a multiple of nine. The same trick works with multiples of three; we have one if we end with 3, 6 or 9.
So </span>

<span>has a sum of digits 31 whose sum of digits is 4, so this isn't a multiple of nine. It will give a remainder of 4 when divided by 9; let's check.
</span>

<span>
</span>Let's focus on remainders when we divide by nine. The digit summing works because 1 and 10 have the same remainder when divided by nine, namely 1. So we see multiplying by 10 doesn't change the remainder. So

has the same remainder as

.
When Ayesha reverses the digits she doesn't change the sum of the digits, so she doesn't change the remainder. Since the two numbers have the same remainder, when we subtract them we'll get a number whose remainder is the difference, namely zero. That's why her method works.
<span>
It doesn't matter if the digits are larger or smaller or how many there are. We might want the first number bigger than the second so we get a positive difference, but even that doesn't matter; a negative difference will still be a multiple of nine. Let's pick a random number, reverse its digits, subtract, and check it's a multiple of nine:
</span>
It is true because if you 15/5 > 5/12
Answer:
2
Step-by-step explanation:
The discriminant is the quantity under the radical in the quadratic formula ...
[tex]x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}[tex]
When that quantity is positive, the square root is real, and the formula gives two real values for x.
My answer -
the answer is D in3 and <span>B.cm3
P.s
Happy to help you have an AWESOME!!!!! day len
</span>