Answer: 6/5
Step-by-step explanation:
Postulate, because we just assume that it is a true fact.
Answer:
(a) B. G(x) is an antiderivative of f(x) because G'(x) = f(x) for all x.
(b) Every function of the form
is an antiderivative of 8x
Step-by-step explanation:
A function <em>F </em>is an antiderivative of the function <em>f</em> if

for all x in the domain of <em>f.</em>
(a) If
, then
is an antiderivative of <em>f </em>because

Therefore, G(x) is an antiderivative of f(x) because G'(x) = f(x) for all x.
Let F be an antiderivative of f. Then, for each constant C, the function F(x) + C is also an antiderivative of <em>f</em>.
(b) Because

then
is an antiderivative of
. Therefore, every antiderivative of 8x is of the form
for some constant C, and every function of the form
is an antiderivative of 8x.
9514 1404 393
Answer:
(a) 6² +3² +1² +1² = 47
(b) 5² +4² +2² +1² +1² = 47
(c) 3³ +4² +2² = 47
Step-by-step explanation:
It can work reasonably well to start with the largest square less than the target number, repeating that approach for the remaining differences. When more squares than necessary are asked for, then the first square chosen may need to be the square of a number 1 less than the largest possible.
The approach where a cube is required can work the same way.
(a) floor(√47) = 6; floor(√(47 -6^2)) = 3; floor(√(47 -45)) = 1; floor(√(47-46)) = 1
__
(b) floor(√47 -1) = 5; floor(√(47-25)) = 4; ...
__
(c) floor(∛47) = 3; floor(√(47 -27)) = 4; floor(√(47 -43)) = 2
Answer:
isolate the variable by dividing each side by factors that dont contain the variable
Step-by-step explanation: