Answer: x = (cd + by) / a
Working out:
(ax - by) / c = d
1)Multiply by c on both sides to get:
ax - by = cd
2) Add by on both sides to get:
ax = cd + by
3) divide by a on both sides to get:
x = (cd + by) / a
Answer: The answer to this bummy question is B
Step-by-step explanation:
Answer:
b. S = 405, D = 0
Step-by-step explanation:
We have been given that profit for a particular product is calculated using the linear equation:
. We are asked to choose the combinations of S and D that would yield a maximum profit.
To solve our given problem, we will substitute given values of S and D in the profit function one by one.
a. S = 0, D = 0
![\text{Profit}=20S+3D](https://tex.z-dn.net/?f=%5Ctext%7BProfit%7D%3D20S%2B3D)
![\text{Profit}=20(0)+3(0)](https://tex.z-dn.net/?f=%5Ctext%7BProfit%7D%3D20%280%29%2B3%280%29)
![\text{Profit}=0](https://tex.z-dn.net/?f=%5Ctext%7BProfit%7D%3D0)
b. S = 405, D = 0
![\text{Profit}=20S+3D](https://tex.z-dn.net/?f=%5Ctext%7BProfit%7D%3D20S%2B3D)
![\text{Profit}=20(405)+3(0)](https://tex.z-dn.net/?f=%5Ctext%7BProfit%7D%3D20%28405%29%2B3%280%29)
![\text{Profit}=8100+0](https://tex.z-dn.net/?f=%5Ctext%7BProfit%7D%3D8100%2B0)
![\text{Profit}=8100](https://tex.z-dn.net/?f=%5Ctext%7BProfit%7D%3D8100)
c. S = 0, D = 299
![\text{Profit}=20S+3D](https://tex.z-dn.net/?f=%5Ctext%7BProfit%7D%3D20S%2B3D)
![\text{Profit}=20(0)+3(299)](https://tex.z-dn.net/?f=%5Ctext%7BProfit%7D%3D20%280%29%2B3%28299%29)
![\text{Profit}=0+897](https://tex.z-dn.net/?f=%5Ctext%7BProfit%7D%3D0%2B897)
![\text{Profit}=897](https://tex.z-dn.net/?f=%5Ctext%7BProfit%7D%3D897)
d. S = 182, D = 145
![\text{Profit}=20S+3D](https://tex.z-dn.net/?f=%5Ctext%7BProfit%7D%3D20S%2B3D)
![\text{Profit}=20(182)+3(145)](https://tex.z-dn.net/?f=%5Ctext%7BProfit%7D%3D20%28182%29%2B3%28145%29)
![\text{Profit}=3640+435](https://tex.z-dn.net/?f=%5Ctext%7BProfit%7D%3D3640%2B435)
![\text{Profit}=4075](https://tex.z-dn.net/?f=%5Ctext%7BProfit%7D%3D4075)
Since the combination S = 405, D = 0 gives the maximum profit ($8100), therefore, option 'b' is the correct choice.
-17
an integer is a negative or positive whole number
a rational number is a number that can be turned into a fractions...can be either positive or negative.
so ur subsets are : rational number and integer
(1) will write us of the following form
![\dfrac{dy}{dx}+y^2\sin x=0\\ \\ ](https://tex.z-dn.net/?f=%5Cdfrac%7Bdy%7D%7Bdx%7D%2By%5E2%5Csin%20x%3D0%5C%5C%20%5C%5C%0A)
(2) [do not it need explanation]
![\dfrac{dy}{dx}=-y^2\sin x\\ \\ ](https://tex.z-dn.net/?f=%5Cdfrac%7Bdy%7D%7Bdx%7D%3D-y%5E2%5Csin%20x%5C%5C%20%5C%5C%0A)
(3) Left place variable "y" and right place, variable "x" like this
![\dfrac{dy}{y^2}=-\sin x\, dx\\ \\](https://tex.z-dn.net/?f=%5Cdfrac%7Bdy%7D%7By%5E2%7D%3D-%5Csin%20x%5C%2C%20dx%5C%5C%20%5C%5C)
(4) Integrate both members
![\displaystyle \int \dfrac{dy}{y^2}=\int-\sin x\, dx\\ \\](https://tex.z-dn.net/?f=%5Cdisplaystyle%0A%5Cint%20%5Cdfrac%7Bdy%7D%7By%5E2%7D%3D%5Cint-%5Csin%20x%5C%2C%20dx%5C%5C%20%5C%5C)
(5) Solve us the integrals
![-\dfrac{1}{y}= \cos x+C](https://tex.z-dn.net/?f=-%5Cdfrac%7B1%7D%7By%7D%3D%20%5Ccos%20x%2BC)
(6) Isolate variable "y"
![\boxed{y=-\dfrac{1}{\cos x+C}}](https://tex.z-dn.net/?f=%5Cboxed%7By%3D-%5Cdfrac%7B1%7D%7B%5Ccos%20x%2BC%7D%7D)
C: any cosntant