Answer:
g(0.9) ≈ -2.6
g(1.1) ≈ 0.6
For 1.1 the estimation is a bit too high and for 0.9 it is too low.
Step-by-step explanation:
For values of x near 1 we can estimate g(x) with t(x) = g'(1) (x-1) + g(1). Note that g'(1) = 1²+15 = 16, and for values near one g'(x) is increasing because x² is increasing for positive values. This means that the tangent line t(x) will be above the graph of g, and the estimates we will make are a bit too big for values at the right of 1, like 1.1, and they will be too low for values at the left like 0.9.
For 0.9, we estimate
g(0.9) ≈ 16* (-0.1) -1 = -2.6
g(1.1) ≈ 16* 0.1 -1 = 0.6
Answer:
4 41cent stamps would be $1.64/ 3- 8 cent stamps would be 23 cents/ $1.64 + 23= $1.87
Step-by-step explanation:
Answer:
3 point in draw
Step-by-step explanation:
because the trinidad netballer draw and got 3 points
Angle 1 is congruent to angles 3, 5, and/or 7
Angle 2 is congruent to angles 4, 6, and/or 8
Angle 5 is congruent to angles 7, 3 and/or 1
Angle 6 is congruent to angles 8, 4, and/or 2
Any of these answers could work for the blanks.
Angles 1 and 3, 2 and 4, 5 and 7, and angles 6 and 8 are congruent because they are vertical angles. They have the same vertex. Not all of these are congruent to each other if this doesn’t make sense. It’s only 1 is congruent to 3, 2 congruent to 4, etc.
Then you have your corresponding angles. These are ones like angles 2 and 6, then 1 and 5. You can also have 8 and 4, or 7 and 3 as corresponding angles
Transversal angles are different. This would be like angles 3 and 4, or 1 and 2. They are not always congruent. The only time they will be congruent is if they are both 90°. Transversal angles are essentially supplementary angles on the transversal line (the line that intersects through the set of parallel lines)
The answer is <span>C. (4/9, -2 7/8)</span>