So you need to come up with a perfect square that works for the x coefficients.
like.. (2x + 2)^2
(2x+2)(2x+2) = 4x^2 + 8x + 4
Compare this to the equation given. Our perfect square has +4 instead of +23. The difference is: 23 - 4 = 19
I'm going to assume the given equation equals zero..
So, If we add subtract 19 from both sides of the equation we get the perfect square.
4x^2 + 8x + 23 - 19 = 0 - 19
4x^2 + 8x + 4 = - 19
complete the square and move 19 over..
(2x+2)^2 + 19 = 0
factor the 2 out becomes 2^2 = 4
ANSWER: 4(x+1)^2 + 19 = 0
for a short cut, the standard equation
ax^2 + bx + c = 0 becomes a(x - h)^2 + k = 0
Where "a, b, c" are the same and ..
h = -b/(2a)
k = c - b^2/(4a)
Vertex = (h, k)
this will be a minimum point when "a" is positive upward facing parabola and a maximum point when "a" is negative downward facing parabola.
2 hundred thousands
5 ten thousands
3 thousands
7 hundreds
6 tens
1 ones
Answer:
74676.
Step-by-step explanation:
Lets try multiplying 127 by 294 ( 127 is a prime number):
127 * 294 = 37338.
37338 / 196 = 190.5
37338 * 2 = 74676 which will now be divisible by 196.
74676 will be divisible by 98, 49 and 7 (because they are factors of 196).
It is also divisible by 84 ( to give 889) and therefore by 42, 28, 21, 14, 12, 6, 4, 3 , 2 and 1 which are all factors of 84.
Answer:
368 sq. units.
Step-by-step explanation:
We have a square of side lengths 20 units and we cut four congruent isosceles right triangles from the corners of the square.
Now, the four isosceles right triangles have one leg equal to 4 units.
Therefore, the area of four triangles =
sq. units.
Now, we have the area of the given square is (20 × 20) = 400 sq. units.
Therefore, the area of the remaining octagon will be (400 - 32) = 368 sq. units. (Answer)