1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
notsponge [240]
3 years ago
15

Help meee.. its due today!!

Mathematics
2 answers:
12345 [234]3 years ago
4 0

Answer:

1/216

Step-by-step explanation:

trasher [3.6K]3 years ago
4 0

Answer:

1/216

Step-by-step explanation:

1/6 X 1/6 X 1/6 = 1/216

You might be interested in
If -y-2x^3=Y^2 then find D^2y/dx^2 at the point (-1,-2) in simplest form
algol13

Answer:

\frac{d^2y}{dx^2} = \frac{-4}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-y - 2x³ = y²

Rate of change of tangent line at point (-1, -2)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Basic Power Rule]:                                                  -y'-6x^2=2yy'
  2. [Algebra] Isolate <em>y'</em> terms:                                                                              -6x^2=2yy'+y'
  3. [Algebra] Factor <em>y'</em>:                                                                                       -6x^2=y'(2y+1)
  4. [Algebra] Isolate <em>y'</em>:                                                                                         \frac{-6x^2}{(2y+1)}=y'
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-6x^2}{(2y+1)}

<u>Step 3: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{-12x(2y+1)+6x^2(2y')}{(2y+1)^2}
  2. [Derivative] Simplify:                                                                                       y'' = \frac{-24xy-12x+12x^2y'}{(2y+1)^2}
  3. [Derivative] Back-Substitute <em>y'</em>:                                                                     y'' = \frac{-24xy-12x+12x^2(\frac{-6x^2}{2y+1} )}{(2y+1)^2}
  4. [Derivative] Simplify:                                                                                      y'' = \frac{-24xy-12x-\frac{72x^4}{2y+1} }{(2y+1)^2}

<u>Step 4: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em> and <em>y</em>:                                                                     y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(-1)^4}{2(-2)+1} }{(2(-2)+1)^2}
  2. [Pre-Algebra] Exponents:                                                                                      y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(1)}{2(-2)+1} }{(2(-2)+1)^2}
  3. [Pre-Algebra] Multiply:                                                                                   y''(-1,-2) = \frac{-48+12-\frac{72}{-4+1} }{(-4+1)^2}
  4. [Pre-Algebra] Add:                                                                                         y''(-1,-2) = \frac{-36-\frac{72}{-3} }{(-3)^2}
  5. [Pre-Algebra] Exponents:                                                                               y''(-1,-2) = \frac{-36-\frac{72}{-3} }{9}
  6. [Pre-Algebra] Divide:                                                                                      y''(-1,-2) = \frac{-36+24 }{9}
  7. [Pre-Algebra] Add:                                                                                          y''(-1,-2) = \frac{-12}{9}
  8. [Pre-Algebra] Simplify:                                                                                    y''(-1,-2) = \frac{-4}{3}
6 0
3 years ago
The perimeter of a square is 26.46 inches. what is the side length of the square?
ser-zykov [4K]
Because to find the perimeter of a shape you have to add all the sides together so you would take 26.46 and divide it by 4 (since squares have 4 sides) to get 6.165
6 0
3 years ago
Which of the following is not a function? Click on the graph until the correct graph appears.
Gelneren [198K]

Answer: The first/ third one

Step-by-step explanation:

7 0
3 years ago
Solve for x.<br><br> A.<br> 6<br> B.<br> 8<br> C.<br> 12<br> D.<br> 18
marysya [2.9K]

we \: get \\  \frac{24}{x}  =  \frac{36}{12} \\  \implies x \:  =  \frac{12 \times 24}{36}  \\  \implies x =  \frac{288}{36}  \\ \implies \: x = 8 \\ hence \: x = 8
8 0
3 years ago
Read 2 more answers
6c+14=−5c+4+9c<br><br> Solve for C
Sedaia [141]
The first thing we need to do is combine like terms

6c+14=-5c+4+9c

6c+14=4c+4
-4c      -4c

2c+14=4
    -14   -14

2c=-10
--    ----
2       2

c=-5

I hope I've helped!
4 0
3 years ago
Read 2 more answers
Other questions:
  • To the nearest hundredth, what is the length of line segment AB ?
    12·1 answer
  • Define the variable plz ASAP!!!!
    13·1 answer
  • What is x times the quotient of y times z in number form?
    10·1 answer
  • I need help on this too<br><br> 2-5=<br><br> -1 - 5=
    15·2 answers
  • I have 12 coins in nickels and dimes. if the total value of these coins is 85 cents, how many nickels are in this collection
    5·1 answer
  • Someone help plzz<br><br> 5 3/16 x 300 =
    14·1 answer
  • Hello, could anyone help me on part A and part B
    10·1 answer
  • F is the midpoint of GH. Point G is located at 32 and F is at 105. What is the location of point H?
    11·1 answer
  • (8.7) and (5.7) slope
    15·1 answer
  • Maria answered 15 math problems in 30 minutes. How many problems did<br> in one minute?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!