Answer: 12 sqrt(5)
Explanation:
First simplify:
= Sqrt(45)
= sqrt(9*5) sqrt of 9 is 3 so bring out 3
= 3sqrt(5)
= 2sqrt(20)
= 2sqrt(4*5) sqrt of 4 is 2 so bring that out and multiply it by 2
= 4sqrt(5)
= 5 sqrt(5) is already simplified
= 3sqrt(5) + 4 sqrt(5) + 5sqrt(5)
= 12 sqrt(5)
        
             
        
        
        
Answer:

Step-by-step explanation:
![\sqrt{5}  \times  \sqrt{10}  \\  =  \sqrt{5}  \times  \sqrt[]{5}  \times  \sqrt{2}  \\   = 5\sqrt{2}](https://tex.z-dn.net/?f=%20%5Csqrt%7B5%7D%20%20%5Ctimes%20%20%5Csqrt%7B10%7D%20%20%5C%5C%20%20%3D%20%20%5Csqrt%7B5%7D%20%20%5Ctimes%20%20%5Csqrt%5B%5D%7B5%7D%20%20%5Ctimes%20%20%5Csqrt%7B2%7D%20%20%5C%5C%20%20%20%3D%205%5Csqrt%7B2%7D%20)
<h3>Hope it is helpful....</h3>
 
        
                    
             
        
        
        
Answer: a. 1734    b. 477000
Step-by-step explanation:
We know that,
Distributive property : a(b+c)  = ab+ac
a. 17 x 102 
=  17 (100+2)
= 17 x 100 + 17 x 2  [Distributive property ]
= 1700+34
= 1734
b. 477×1035 -477×35 
= 477 (1035-35)  [Distributive property ]
= 477 (1000)
= 477000
 
        
             
        
        
        
<h3>
Answer: 24 (choice C)</h3>
Assuming M is a midpoint of KW, this means that WM and KM are congruent
WM = KM
x+3 = 2(x-3) ... substitution
x+3 = 2x-6
2x-6 = x+3
2x-6-x = x+3-x .... subtract x from both sides
x-6 = 3
x-6+6 = 3+6 ... add 6 to both sides
x = 9
Use x = 9 to find the length of WM
WM = x+3 = 9+3 = 12
Which can be used to find the length of KM as well
KM = 2(x-3) = 2(9-3) = 2(6) = 12
both lengths are the same (12) as expected
This makes WK to be 
WK = WM + KM
WK = 12 + 12
WK = 24