Answer:
a
Since the integral has an infinite discontinuity, it is a Type 2 improper integral
b
Since the integral has an infinite interval of integration, it is a Type 1 improper integral
c
Since the integral has an infinite interval of integration, it is a Type 1 improper integral
d
Since the integral has an infinite discontinuity, it is a Type 2 improper integral
Step-by-step explanation:
Considering a

Looking at this we that at x = 3 this integral will be infinitely discontinuous
Considering b

Looking at this integral we see that the interval is between
which means that the integral has an infinite interval of integration , hence it is a Type 1 improper integral
Considering c

Looking at this integral we see that the interval is between
which means that the integral has an infinite interval of integration , hence it is a Type 1 improper integral
Considering d

Looking at the integral we see that at x = 0 cot (0) will be infinity hence the integral has an infinite discontinuity , so it is a Type 2 improper integral
Answer:
1231.5
Step-by-step explanation:
I hope this help.
So what you do is multiply 60, 30, and 100 together to get 180,000. Then divide 180,000 by 18,000 (simplify it to 180 ÷ 18) and the answer is 10. So they could turn it up 10 notches.
Answer:

Step-by-step explanation:
<u>Trinomio Cuadrado Perfecto</u>
El producto notable llamado cuadrado de un binomio se expresa como:

Si se tiene un trinomio, es posible convertirlo en un cuadrado perfecto si cumple con las condiciones impuestas en la fórmula:
* El primer término es un cuadrado perfecto
* El último término es un cuadrado perfecto
* El segundo término es el doble del proudcto de los dos términos del binomio.
Tenemos la expresión:

Calculamos el valor de a como la raiz cuadrada del primer término del trinomio:


Calculamos el valor de a como la raiz cuadrada del primer término del trinomio:


Nos cercioramos de que el término central es 2ab:

Operando:

Una vez verificado, ahora podemos decir que:

Answer:
Option D!
Step-by-step explanation: