9514 1404 393
Answer:
{Segments, Geometric mean}
{PS and QS, RS}
{PS and PQ, PR}
{PQ and QS, QR}
Step-by-step explanation:
The three geometric mean relationships are derived from the similarity of the triangles the similarity proportions can be written 3 ways, each giving rise to one of the geometric mean relations.
short leg : long leg = SP/RS = RS/SQ ⇒ RS² = SP·SQ
short leg : hypotenuse = RP/PQ = PS/RP ⇒ RP² = PS·PQ
long leg : hypotenuse = RQ/QP = QS/RQ ⇒ RQ² = QS·QP
I find it easier to remember when I think of it as <em>the segment from R is equal to the geometric mean of the two segments the other end is connected to</em>.
__
segments PS and QS, gm RS
segments PS and PQ, gm PR
segments PQ and QS, gm QR
4382
Since 4.1% x 8 = 32.8%
32.8% of 3300 = 1082.4
3300 + 1082.4 = 4082 rounded
Answer:
hi
Step-by-step explanation:
I can only assume that you meant, "Solve for x:"
Apply the exponent 3/2 to both sides of this equation. The result will be
3/2
343 = x/6.
Multiplying both sides by 6 isolates x:
3/2
6*343 = x Since 7^3 = 343, the expression for x
can be rewritten as
3/2
6*(7^3) = x which can be further simplified, as follows:
x = 6^(3/2)*7^(9/2), or:
x = 6^(3/2)*7^(8/2)*√7, or
x = 6^(3/2)*7^4*√7
Hmm i think it’s about 21 this doesn’t help at all btw don’t use this i just need some points fam