Answer:
The levels, from smallest to largest, are: molecule, cell, tissue, organ, organ system, organism, population, community, ecosystem, biosphere.
Explanation:
Answer:
C. Removing this step decreases the amount of carbon in the air: This is correct, removing factories would decrease the emission of greenhouse gases, thus decreasing CO2 in the atmosphere.
Explanation:
When we look at the picture we can see that the line that goes from G to C, goes from a factory to the atmosphere. As we know factories release a great number of elements into the atmosphere being one of them, carbon dioxide. Therefore taking into consideration we can proceed to analyze the following statements.
A. Removing this step prevents photosynthesis in the next step: This is not true industry increases carbon dioxide in the atmosphere, even if they don't exist there is enough CO2 for plants to perform photosynthesis.
B.Removing this step increases the amount of carbon in the soil: This is not true as factories release carbon dioxide to the atmosphere, not the soil.
C. Removing this step decreases the amount of carbon in the air: This is correct, removing factories would decrease the emission of greenhouse gases, thus decreasing CO2 in the atmosphere.
D. Removing this step increases carbon storage in plants: This is incorrect the carbon storage in plants is cording to their necessities independently of the abundance in CO2, in the atmosphere.
Answer:
C
Explanation:
It is positively charged and include most of the atom's mass.
Answer: Water will leave the cell and the cell will shrink.
Explanation:
Osmosis is the net movement of water from an area of low to high concentration of solutes through a semipermeable membrane. If none of the compartments contains solutes, then the water moves in either direction between the compartments. <u>However, if we add a solute to one of the compartments, this will affect the probability of water molecules leaving that compartment and moving into the other compartment.</u> The ability of water to move into or out of a cell is called tonicity. The tonicity of a solution is related to its osmolarity, which is the total concentration of all the solutes in the solution. A solution with low osmolarity has few solute particles per liter of solution, whereas a solution with high osmolarity has many solute particles per liter of solution. When two solutions with different osmolarities are separated by a membrane permeable to water but not permeable to solutes, water diffuses from the side with lower osmolarity to the side with higher osmolarity. So, solutions can be:
- <u>Hypotonic</u>: The extracellular fluid has a lower osmolarity than the fluid inside the cell, it is hypotonic with respect to the cell, and the net flow of water will be into the cell.
- <u>Hypertonic</u>: The extracellular fluid has a higher osmolarity than the cytoplasm of the cell, it is hypertonic with respect to the cell and water will flow out of the cell.
- <u>Isotonic</u>: The extracellular fluid and the cell have the same osmolarity so there is no net movement of water.
If a cell is placed in a hypertonic solution, water will leave the cell and the cell will shrink due to the difference in pressure and may even die from dehydration.