Answer:
The number of students who scored more than 90 points is 750.
Step-by-step explanation:
Quartiles are statistical measures that the divide the data into four groups.
The first quartile (Q₁) indicates that 25% of the observation are less than or equal to Q₁.
The second quartile (Q₂) indicates that 50% of the observation are less than or equal to Q₂.
The third quartile (Q₃) indicates that 75% of the observation are less than or equal to Q₃.
It is provided that the first quartile is at 90 points.
That is, P (X ≤ 90) = 0.25.
The probability that a student scores more than 90 points is:
P (X > 90) = 1 - P (X ≤ 90)
= 1 - 0.25
= 0.75
The number of students who scored more than 90 points is: 1000 × 0.75 = 750.
Answer: 9.4
Step-by-step explanation:
if you see on the screenshot if you draw a line between the 2 it mesures 9.4
So what you do is (2/3)x-9=7. Add 9 to both sides (2/3)x=16. Multiply by reciprocal on both sides 16 x (3/2). 16 x 3 = 48. 48/2=24
<h2>1)</h2>

This must be true for some value of x, since we have a quantity squared yielding a positive number, and since the equation is of second degree,there must exist 2 real roots.

<h2>2)</h2>
Well he started off correct to the point of completing the square.
