Yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixninediideboppp yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixninediideboppp yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixninediideboppp yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixninediideboppp yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixninediideboppp yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixninediideboppp yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixninediideboppp yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixninediideboppp yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixninediideboppphoopi yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixninediideboppp yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixnine yyyymoneymancanudancetekashiesixninediideboppp
The answer would be the first option (x+1)(x+8). You would use the foil method, which will give you the equivalent value of the expression.
Hope this helped
solution:
I choose 5 women from a pool of 10 in 10C2 ways.
I choose 5 men from a pool of 12 in 12C2 ways.
So total number of ways of choosing in 10C2 x 12C2. Now I need to arrange them in 5 pairs. This is where I have a different solution. The solution says that there are 5! ways to arrange them in pairs.
But I cant seem to understand why? My reasoning is that for first pair position I need to choose 1 man from 5 and 1 woman from 5. So for the first position I have 5 x 5 choices (5 for man and 5 for woman). Similarly for the second position I have 4 x 4 choices and so on. Hence the total ways are 5! x 5!
So I calculate the total ways as 10C2 * 12C2 * 5! * 5!. Can anyone point the flaw in my reasoning for arranging the chosen men and women in pairs.
Answer:
Step-by-step explanation:
Answer:
15
Step-by-step explanation:
15 because the mode is the one that occurs the most and 15 has 3 numbers.