Answer:
h=v/2r
Step-by-step explanation:
v = 2rh
Divide from one side to get h alone and you get the answer.
Answer:
4x(x - 1)
Step-by-step explanation:
Factor the numerator and denominator
64
- 64x ← factor out 64x from both terms
= 64x(
- 1) ← difference of squares
= 64x(x² - 1)(x² + 1) ← x² - 1 is also a difference of squares
= 64x(x - 1)(x + 1)(x² + 1)
---------------------------------
(8x² + 8)(2x + 2) ← factor out 8 and 2 from each factor
= 8(x² + 1) × 2(x + 1)
= 16(x² + 1)(x + 1)
Then expression can be written as
← cancel (x² + 1) and (x + 1) on numerator/ denominator
=
← cancel common factor 16 on numerator/ denominator
= 4x(x - 1)
Hi there! :)

Solve for j(h(x)):
h(x) = x² + 4
j(x) = 4x - 1
Substitute in h(x) into "x":
j(h(x)) = 4(x² + 4) - 1
j(h(x)) = 4x² + 16 - 1
j(h(x)) = 4x² + 15
Solve at x = 2:
4(2)² + 15 = 4(4) + 15 = 31.
Sorry bro I don’t understand how to answer that question
we have to find equation similar to

Firstly , we can divide both sides by 2


now, we can multiply both sides by 3

we get
............Answer