Answer:
b
Step-by-step explanation:
:)
Answer:
Step-by-step explanationPaso 1
1 Si el radicando tiene más de dos cifras separamos las cifras en grupos de dos, empezando por la derec2 Calculamos la raíz cuadrada entera o exacta, del primer grupo de cifras por la izquierda, ha.3 El cuadrado de la raíz obtenida 2 (es decir 4) se resta al primer grupo de cifras que aparecen en el radicando Bajamos el siguiente grupo de cifras del radicando, separando del número formado (492) la primera cifra a la derecha (2) y dividiendo lo que resta entre el doble de la raíz 2, es decir 2(2)=4. 5En otra fila debajo de la raíz colocamos el doble de la misma (4). A continuación, se coloca el cociente que se obtenga (9) . Y luego el número obtenido (49) se multiplica por dicho cociente (9). Después, se resta (441) a la cantidad operable (492) del radicando. El cociente obtenido (9) es la segunda cifra de la raíz, quedando (29) Bajamos el siguiente par de cifras y repetimos los pasos anteriores.
Prueba de la raíz cuadrada. Para que el resultado sea correcto, se tiene que cumplir:
.
Answer:
B 2
Step-by-step explanation:
The computation of the value of f(x) in the case when x = 2 is shown below
As per the question, following function is given
F(x) = (1 ÷ x) + 2
Based on this, the x = 2
Now put the x value in the above equation
So,
= (1 ÷ 2) + 2
= (1 + 4) ÷ 2
= 5 ÷ 2
= 2.5
Hence the closet number is 2
Therefore the value of f(x) in the case when x = 2 is 2
Hence, the correct option is b.
Answer:
It is A
Step-by-step explanation:
Answer:
-3, 1, 4 are the x-intercepts
Step-by-step explanation:
The remainder theorem tells you that dividing a polynomial f(x) by (x-a) will result in a remainder that is the value of f(a). That remainder will be zero when (x-a) is a factor of f(x).
In terms of finding x-intercepts, this means we can reduce the degree of the polynomial by factoring out the factor (x-a) we found when we find a value of "a" that makes f(a) = 0.
__
For the given polynomial, we notice that the sum of the coefficients is zero:
1 -2 -11 +12 = 0
This means that x=1 is a zero of the polynomial, and we have found the first x-intercept point we can plot on the given number line.
Using synthetic division to find the quotient (and remainder) from division by (x-1), we see that ...
f(x) = (x -1)(x² -x -12)
We know a couple of factors of 12 that differ by 1 are 3 and 4, so we suspect the quadratic factor above can be factored to give ...
f(x) = (x -1)(x -4)(x +3)
Synthetic division confirms that the remainder from division by (x -4) is zero, so x=4 is another x-intercept. The result of the synthetic division confirms that x=-3 is the remaining x-intercept.
The x-intercepts of f(x) are -3, 1, 4. These are the points you want to plot on your number line.