Answer:
The value of ROE that will be exceeded by 78% of the firms is -1.77%.
Step-by-step explanation:
Problems of normally distributed samples can be solved using the z-score formula.
In a set with mean
and standard deviation
the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:
The mean ROE for the firms studied was 14.93% and the standard deviation was 21.74%. This means that 
What value of ROE will be exceeded by 78% of the firms?
This is the value of X when Z has a pvalue of 1-0.78 = 0.22.
This is 
So:




The value of ROE that will be exceeded by 78% of the firms is -1.77%.
The polynomial remainder theorem states that the remainder upon dividing a polynomial

by

is the same as the value of

, so to find

you need to find the remainder upon dividing

You have
..... | 2 ... 14 ... -58
-10 | ... -20 ... 60
--------------------------
..... | 2 ... -6 .... 2
So the quotient and remainder upon dividing is

with a remainder of 2, which means

.
Answer:
Hello,
Answer 6
Step-by-step explanation:

The smallest number to be susbtracted is 6
Answer:
table C
Step-by-step explanation:
The constant of proportionality k= y/x
table C shows constant proportionality :
90/9=140/14=240/24=10