(a) ![[\frac{9}{2.6} - \frac{2.5^{2} }{2.5} ]^{2}](https://tex.z-dn.net/?f=%5B%5Cfrac%7B9%7D%7B2.6%7D%20%20-%20%5Cfrac%7B2.5%5E%7B2%7D%20%7D%7B2.5%7D%20%5D%5E%7B2%7D)
Answer:
![[\frac{9}{2.6} - \frac{2.5^{2} }{2.5} ]^{2}](https://tex.z-dn.net/?f=%5B%5Cfrac%7B9%7D%7B2.6%7D%20%20-%20%5Cfrac%7B2.5%5E%7B2%7D%20%7D%7B2.5%7D%20%5D%5E%7B2%7D)
= ![[\frac{9}{2.6} - \frac{2.5*2.5 }{2.5} ]^{2}](https://tex.z-dn.net/?f=%5B%5Cfrac%7B9%7D%7B2.6%7D%20%20-%20%5Cfrac%7B2.5%2A2.5%20%7D%7B2.5%7D%20%5D%5E%7B2%7D)
= ![[\frac{9}{2.6} - \frac{2.5}{1} ]^{2}](https://tex.z-dn.net/?f=%5B%5Cfrac%7B9%7D%7B2.6%7D%20%20-%20%5Cfrac%7B2.5%7D%7B1%7D%20%5D%5E%7B2%7D)
*canceling 2.5 in numerator and denominator*
![= [\frac{9-(2.5)(2.6)}{2.6} ]^2\\*Using L.C.M of 2.6 and 1 which comes out to be '2.6'= [\frac{9-(6.5)}{2.6} ]^2\\= [\frac{2.5}{2.6} ]^2\\*multiplying and dividing by '10'= [\frac{2.5*10}{2.6*10} ]^2\\= [\frac{25}{26} ]^2\\= \frac{25^2}{26^2}\\= \frac{625}{676}\\= 0.925](https://tex.z-dn.net/?f=%3D%20%5B%5Cfrac%7B9-%282.5%29%282.6%29%7D%7B2.6%7D%20%5D%5E2%5C%5C%3C%2Fp%3E%3Cp%3E%2AUsing%20L.C.M%20of%202.6%20and%201%20which%20comes%20out%20to%20be%20%272.6%27%3C%2Fp%3E%3Cp%3E%3D%20%5B%5Cfrac%7B9-%286.5%29%7D%7B2.6%7D%20%5D%5E2%5C%5C%3D%20%5B%5Cfrac%7B2.5%7D%7B2.6%7D%20%5D%5E2%5C%5C%3C%2Fp%3E%3Cp%3E%2Amultiplying%20and%20dividing%20by%20%2710%27%3C%2Fp%3E%3Cp%3E%3D%20%5B%5Cfrac%7B2.5%2A10%7D%7B2.6%2A10%7D%20%5D%5E2%5C%5C%3D%20%5B%5Cfrac%7B25%7D%7B26%7D%20%5D%5E2%5C%5C%3D%20%5Cfrac%7B25%5E2%7D%7B26%5E2%7D%5C%5C%3D%20%5Cfrac%7B625%7D%7B676%7D%5C%5C%3D%200.925)
Properties used:
Cancellation property of fractions
Least Common Multiplier(LCM)
The least or smallest common multiple of any two or more given natural numbers are termed as LCM. For example, LCM of 10, 15, and 20 is 60.
(b) ![[[\frac{3x^{a}y^{b}} {-3x^{a} y^{b} } ]^{3} ] ^{2}](https://tex.z-dn.net/?f=%20%5B%5B%5Cfrac%7B3x%5E%7Ba%7Dy%5E%7Bb%7D%7D%20%7B-3x%5E%7Ba%7D%20y%5E%7Bb%7D%20%7D%20%5D%5E%7B3%7D%20%20%20%20%5D%20%5E%7B2%7D%20)
Answer:
![[[\frac{3x^{a}y^{b}} {-3x^{a} y^{b} } ]^{3}] ^{2}\\](https://tex.z-dn.net/?f=%5B%5B%5Cfrac%7B3x%5E%7Ba%7Dy%5E%7Bb%7D%7D%20%7B-3x%5E%7Ba%7D%20y%5E%7Bb%7D%20%7D%20%5D%5E%7B3%7D%5D%20%5E%7B2%7D%5C%5C)
*using
*
*Again, using
*
![= \frac{3x^{2*3a}y^{2*3b}} {-3x^{2*3a} y^{2*3b} } \\= (-1)\frac{3x^{6a}y^{6b}} {3x^{6a} y^{6b} }\\[\tex]*taking -1 common, denominator and numerator are equal*[tex]= -(1)\frac{1}{1}\\= -1](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B3x%5E%7B2%2A3a%7Dy%5E%7B2%2A3b%7D%7D%20%7B-3x%5E%7B2%2A3a%7D%20y%5E%7B2%2A3b%7D%20%7D%20%20%5C%5C%3D%20%28-1%29%5Cfrac%7B3x%5E%7B6a%7Dy%5E%7B6b%7D%7D%20%7B3x%5E%7B6a%7D%20y%5E%7B6b%7D%20%7D%5C%5C%5B%5Ctex%5D%3C%2Fp%3E%3Cp%3E%2Ataking%20-1%20common%2C%20denominator%20and%20numerator%20are%20equal%2A%3C%2Fp%3E%3Cp%3E%5Btex%5D%3D%20-%281%29%5Cfrac%7B1%7D%7B1%7D%5C%5C%3D%20-1)
Property used: 'Power of a power'
We can raise a power to a power
(x^2)4=(x⋅x)⋅(x⋅x)⋅(x⋅x)⋅(x⋅x)=x^8
This is called the power of a power property and says that to find a power of a power you just have to multiply the exponents.
Hey there Rosy! I did this recently and the answer is:
1 : 4
2 to 8
18
---
72
Answer:
4
Step-by-step explanation:
3x2 is 6
2-4 is -2
6-2 is 4
Answer:
d = 233.23 feet
Step-by-step explanation:
Given that,
Justin walks 200 feet to the east, then turns and walks 120 feet due south.
We need to find the total distance walked by Justin. Let the distance be d.
We can use the Pythagoras theorem to find it such that,

So, he walk 233.23 feet in all.
Answer:
P(A)=0.55
P(A and B)=P(A∩B)=0.1265
P(A or B)=P(A∪B)=0.7635
P(A|B)=0.3721
Step-by-step explanation:
P(A')=0.45
P(A)=1-0.45=0.55
P(B∩A)=?
P(B|A)=0.23
P(B|A)=(P(A∩B))/P(A)
0.23=(P(A∩B))/0.55
P(A∩B)=0.23×0.55=0.1265
P(A∪B)=P(A)+P(B)-P(A∩B)
=0.55+0.34-0.1265
=0.7635
P(A|B)=[P(A∩B)]/P(B)=0.1265/0.34 ≈0.3721