Answer:
Part a)
We need to find the equation of a straight line passing through two given points in slope-intercept form
Part b)
The information given; we are given two points where the line passes through; (0, -4) and (-2, 2)
Part c)
We shall first determine the slope of the line using the formula;
change in y/change in x. Next, we determine the value of the y-intercept using the general form of the equation of a straight line in slope-intercept form; y = mx+c
Part d)
The slope of the line is calculated as;
(2--4)/(-2-0) =6/-2 = -3
The equation of the line in slope-intercept form becomes;
y = -3x +c
We use the point (0, -4) to determine the value of c;
-4 = -3(0)+c
c = -4
Part e)
Final solution thus becomes;
y=-3x-4