Answer:
The mean of the distribution of sample means is 27.6
Step-by-step explanation:
We are given the following in the question:
Mean, μ = 27.6
Standard Deviation, σ = 39.4
We are given that the population is a bell shaped distribution that is a normal distribution.
Sample size, n = 173.
We have to find the mean of the distribution of sample means.
Central Limit theorem:
- It states that the distribution of the sample means approximate the normal distribution as the sample size increases.
- The mean of all samples from the same population will be approximately equal to the mean of the population.
Thus, we can write:

Thus, the mean of the distribution of sample means is 27.6
Answer:
52
Step-by-step explanation:
given that the number is a
The expression for Ten less than 5 times the value of a number is given by
5a - 10
10 times the quantity of 12 more than one-fourth of the number.
a/4 is one-fourth of number
12 more than one-fourth of the number
a/4 + 12
expression for 10 times the quantity of 12 more than one-fourth of the number. is given by
10(a/4 + 12) = 10a/4 + 12*10 = 2.5a + 120
Given that the above two expression are equal
equating them we have
5a - 10 = 2.5a + 120
adding 10 both sides
=>5a - 10+ 10 = 2.5a + 120 + 10
=> 5a = 2.5a + 130
subtracting 2.5a from both sides
=> 5a - 2.5a = 2.5a + 130 - 2.5a
=> 2.5a = 130
dividing both side by 2.5
=> a = 130/2.5 = 52
Thus, value of a is 52
It would be 1/2 because that is the fraction of 50<span>%
</span>
Answer:
Enlargement by a scale factor of 3 centre (1,0)
Step-by-step explanation: