The answer should be B, in other words 41
The answer is 8.5% interest compounded daily.
EXPLANATION
Regardless of your rate, the more often interest is paid, the more beneficial the effects of compound interest.
A daily interest account, which has 360 compounding periods a year, in this case, will generate more money than an account with an annual compounding, which has one compounding period per year.
Answer:
a) 81.5%
b) 95%
c) 75%
Step-by-step explanation:
We are given the following information in the question:
Mean, μ = 266 days
Standard Deviation, σ = 15 days
We are given that the distribution of length of human pregnancies is a bell shaped distribution that is a normal distribution.
Formula:

a) P(between 236 and 281 days)

b) a) P(last between 236 and 296)

c) If the data is not normally distributed.
Then, according to Chebyshev's theorem, at least
data lies within k standard deviation of mean.
For k = 2

Atleast 75% of data lies within two standard deviation for a non normal data.
Thus, atleast 75% of pregnancies last between 236 and 296 days approximately.
13 and 2, I think that is the only one left.
<span><span>(<span><span>8x</span>+7</span>)</span>*<span>(<span><span>8x</span>+7</span>)</span></span>*<span>(<span><span>8x</span>+7</span><span>)
</span></span><span>(<span><span>8x</span>+7</span>)</span><span>(<span><span><span>64<span>x^2</span></span>+<span>112x</span></span>+49</span><span>)
</span></span><span><span><span><span><span><span><span>(<span>8x</span>)</span><span>(<span>64<span>x^2</span></span>)</span></span>+<span><span>(<span>8x</span>)</span><span>(<span>112x</span>)</span></span></span>+<span><span>(<span>8x</span>)</span><span>(49)</span></span></span>+<span><span>(7)</span><span>(<span>64<span>x^2</span></span>)</span></span></span>+<span><span>(7)</span><span>(<span>112x</span>)</span></span></span>+<span><span>(7)</span><span>(49)
</span></span></span><span><span><span><span><span>512<span>x^3</span></span>+<span>896<span>x^2</span></span></span>+<span>392x</span></span>+<span>448<span>x^2</span></span></span>+<span>784x</span></span>+<span>343
</span>Answer:
<span><span><span>512<span>x^3</span></span>+<span>1344<span>x^2</span></span></span>+<span>1176x</span></span>+<span>343</span>