Who says V1=V2?
if we simplify we get
(2/3)pir₁³=12pir₂²
for V1 to equal V2
a.
solve for r₁ to find r₁ as a function of r₂
(2/3)pir₁³=12pir₂²
times 3/2 both sides and divide by pi
r₁³=18r₂²
cube root both sides
r₁=∛(18r₂²)
if solve for r₂
(2/3)pir₁³=12pir₂²
divide by 12pi both sides
(1/18)r₁³=r₂²
squer root both sides
√((1/18)r₁³)=r₂
double radius of pond which is r1
√((1/18)r₁³)=r₂
r₁ turns to 2r₁ to double radius
√((1/18)(2r₁)³)=r₂double
√(8(1/18)(r₁)³)=r₂double
(√8)(√((1/18)(r₁)³))=r₂double
√((1/18)r₁³)=r₂ so
(√8)(r₂)=r₂double
(2√2)(r₂)=r₂double
the radius of the tank is multipled by 2√2
B. both r correct
when it’s 2x it goes up two over one. rise/run, 2/1
for the table if you look at the graph when x=1 then y=2 and if x=2 then y=4
Answer:
p = 39 f = 44
Step-by-step explanation:
p = $ 1.73
f = $ 1.44
<u><em>equation </em></u>
p + f = 83
1.73 p + 1.44 (83 - p) = $ 130.83
p = 39 (amount of times fruit pies were sold).
Therefore,
<em>p = 39</em>
<em>f = 44</em>
Answer:
x = y = 2√2
Step-by-step explanation:
Find the diagram attached
To get the unknown side x and y, we need to use the SOH CAH TOA identity
Opposite side = x
Adjacent = y
Hypotenuse = 4
Sin theta = opposite/hypotenuse
sin 45 = x/4
x = 4 sin 45
x = 4 * 1/√2
x = 4 * 1/√2 * √2/√2
x = 4 * √2/√4
x = 4 * √2/2
x = 2√2
Similarly;
cos theta = adjacent/hypotenuse
cos 45 = y/4
y = 4cos45
y = 4 * 1/√2
y = 4 * 1/√2 * √2/√2
y = 4 * √2/√4
y = 4 * √2/2
y = 2√2