Answer: Yes. Splicing can be done in different ways to yield different mRNAs wich will create different proteins. Prokaryotes are not able to do this.
Explanation:
DNA (deoxyribonucleic acid) is a molecule that contains the genetic information for synthesizing amino acids that form proteins. To do this, DNA must first be transcribed into RNA (ribonucleic acid) and this is the molecule used for protein synthesis (translation). The newly transcribed RNA (called primary messenger RNA) from DNA results in a very long molecule and also has regions that do not code for anything, called introns, which are removed by a process called splicing. Exons are segments in the RNA that do code for amino acids and remain in the mature mRNA after splicing.
<u>Splicing is a process by which introns are cleaved from the primary messenger RNA and exons are joined to generate mature messenger RNA.</u> In addition, alternative splicing occurs which allows different mRNA isoforms and thus different proteins to be obtained from a primary mRNA transcript. This is because the exons will be joined or spliced in different ways, giving rise to different mature messenger RNA sequences. This process occurs mainly in eukaryotes, although it can also be observed in viruses. But it does not take place in Prokaryotes (Bacteria).
In summary, exons/introns can be spliced together in different ways to yield different mRNAs sequences. Each different mRNA sequence will code for a different protein.
The Tundra.. IT HAS THE COLDEST TEMPS.
Answer:
Angiosperms evolved during the late Cretaceous Period, about 125-100 million years ago.
hope it helps.
It can impact its physical characteristics
<span>developing a technique for observing an object that has yet to be observed
</span><span>Thus, to achieve the creative approach above the researchers must utilize and apply the </span>scientific method in gathering, interpreting and analyzing empirical evidence<span>. </span>
<span>Empirical evidence, data or knowledge is an obtained set of facts or figures or existing and presenting data that was yielded during the process of experimentation or scientific discovery. These empirical data or evidence is further studied and investigated by the scientist in a formal scientific approach which follows the steps of observation, making a hypothesis, gathering data, interpreting data and evaluating the data. These steps of the scientific approach are vital in the course to explain and discuss the result and evidence obtained during the process. </span>