1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
igor_vitrenko [27]
3 years ago
7

If

Mathematics
2 answers:
Daniel [21]3 years ago
7 0

Answer:

$x=\sqrt{\frac{7(4+\sqrt{15})}{2}} $

Step-by-step explanation:

From the way it is written, the x is outside the square root. I will rewrite it as:

x\sqrt{5} =x\sqrt{3} +\sqrt{7}

x\sqrt{5}-x\sqrt{3}=\sqrt{7}

x(\sqrt{5} - \sqrt{3} )=\sqrt{7}

$x= \frac{\sqrt{7} }{\sqrt{5} - \sqrt{3}} \implies \frac{\sqrt{7}(\sqrt{5} + \sqrt{3}) }{2}  $

$x=\frac{1}{2} \sqrt{7} (\sqrt{5} + \sqrt{3} )$

$x=\frac{\sqrt{35}}{2} +\frac{ \sqrt{21}}{2} $

$x=\frac{\sqrt{35}+\sqrt{21}}{2} $

Multiply denominator and numerator by 3

$x=\frac{3\sqrt{35}+3 \sqrt{21}}{6} $

Factor \sqrt{3}

\sqrt{3} (\sqrt{105}+3 \sqrt{7})

$x=\frac{\sqrt{3} (\sqrt{105}+3 \sqrt{7})}{6} $

Divide denominator and numerator by \sqrt{3}

$x=\frac{\sqrt{105}+3 \sqrt{7}}{2\sqrt{3} } $

Let's rewrite it again

$x=\frac{\sqrt{ (\sqrt{105}+3 \sqrt{7})^2}}{\sqrt{12} } $

$x=\sqrt{ \frac{1}{12} \cdot (\sqrt{105}+3 \sqrt{7})^2}$

It is already in the form $\sqrt{\frac{a}{b} } $

Expanding the perfect square, we have

63+42\sqrt{15}+105

$\frac{63}{12} +\frac{42\sqrt{15}}{12} +\frac{105}{12} $

$\frac{21}{4} +\frac{7\sqrt{15}}{2} +\frac{35}{4} $

Factor $\frac{7}{2} $

$\frac{7}{2} (4+\sqrt{15} )$

Therefore,

$x=\sqrt{\frac{7}{2} \left(4+\sqrt{15}   \right)} $

$x=\sqrt{\frac{7(4+\sqrt{15})}{2}} $

DanielleElmas [232]3 years ago
6 0
X= 7/4 x 25/6 is the answer
You might be interested in
If h(x)=x-7 and g(x)=x ^2, which expression is equivalent to (g•h)(5)
pashok25 [27]

x^3 ‐ 7x^2

Explanation:

x^2(x-7) = x^3 ‐ 7x^2

7 0
3 years ago
PLS HELP ME Find a sum equivalent to the product shown. 5(x+z)
andrezito [222]

Answer:

20

Step-by-step explanation:

4 0
3 years ago
I try to look this up and people said yes or no I just need a straight answer
Anna11 [10]

start inside the square root, replace X with -7.

-7 + 11 = 4

The number 4 comes out of the square root as 2.

Now there's a minus factor out there. Let's multiply this negative factor by 2 and get -2.

Now let's add -2 and -3.

Our output is -5.

3 0
3 years ago
WILL GIVE BRAINLIEST
podryga [215]

Answer:

80 pages

Step-by-step explanation:

x = number of pages of articles

x = 110 - (23 + 14/2)

x = 110 - (23 + 7)

x = 110 - 30

x = 80

6 0
3 years ago
Solve 5y'' + 3y' – 2y = 0, y(0) = 0, y'(0) = 2.8 y(t) = 0 Preview
mario62 [17]

Answer:  The required solution is

y(t)=-\dfrac{7}{3}e^{-t}+\dfrac{7}{3}e^{\frac{1}{5}t}.

Step-by-step explanation:   We are given to solve the following differential equation :

5y^{\prime\prime}+3y^\prime-2y=0,~~~~~~~y(0)=0,~~y^\prime(0)=2.8~~~~~~~~~~~~~~~~~~~~~~~~(i)

Let us consider that

y=e^{mt} be an auxiliary solution of equation (i).

Then, we have

y^prime=me^{mt},~~~~~y^{\prime\prime}=m^2e^{mt}.

Substituting these values in equation (i), we get

5m^2e^{mt}+3me^{mt}-2e^{mt}=0\\\\\Rightarrow (5m^2+3y-2)e^{mt}=0\\\\\Rightarrow 5m^2+3m-2=0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[\textup{since }e^{mt}\neq0]\\\\\Rightarrow 5m^2+5m-2m-2=0\\\\\Rightarrow 5m(m+1)-2(m+1)=0\\\\\Rightarrow (m+1)(5m-1)=0\\\\\Rightarrow m+1=0,~~~~~5m-1=0\\\\\Rightarrow m=-1,~\dfrac{1}{5}.

So, the general solution of the given equation is

y(t)=Ae^{-t}+Be^{\frac{1}{5}t}.

Differentiating with respect to t, we get

y^\prime(t)=-Ae^{-t}+\dfrac{B}{5}e^{\frac{1}{5}t}.

According to the given conditions, we have

y(0)=0\\\\\Rightarrow A+B=0\\\\\Rightarrow B=-A~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(ii)

and

y^\prime(0)=2.8\\\\\Rightarrow -A+\dfrac{B}{5}=2.8\\\\\Rightarrow -5A+B=14\\\\\Rightarrow -5A-A=14~~~~~~~~~~~~~~~~~~~~~~~~~~~[\textup{Uisng equation (ii)}]\\\\\Rightarrow -6A=14\\\\\Rightarrow A=-\dfrac{14}{6}\\\\\Rightarrow A=-\dfrac{7}{3}.

From equation (ii), we get

B=\dfrac{7}{3}.

Thus, the required solution is

y(t)=-\dfrac{7}{3}e^{-t}+\dfrac{7}{3}e^{\frac{1}{5}t}.

7 0
3 years ago
Other questions:
  • Jana divided a sheet of paper into five equal sections and colored two of the sections read what percent of the paper did she co
    8·1 answer
  • About how many inches are in 3 meters
    6·1 answer
  • Hi i kinda stuck on this question. <br>Help please. <br>Workings Please​
    11·1 answer
  • HELP me on 14 please :)
    12·1 answer
  • Based on the equation 6x + 2y = 30, what is the missing value in the table?
    8·2 answers
  • Just answer correctly to get brainleist and 10 pts! :)
    5·1 answer
  • A florist uses 5 red roses for every 2 white
    5·2 answers
  • Can someone help me simplify and write in power form and show me step by step how to do it for both problem 8 and 9?
    9·1 answer
  • Two functions are ________
    15·1 answer
  • What is the solution to the equation 5x=6?
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!