Answer:
see explanation
Step-by-step explanation:
(f + g)(x) = f(x) + g(x), so
f(x) + g(x)
= x² + 5x + 6 + x + 3 ← collect like terms
= x² + 6x + 9
-------------------------------------------------
(f - g)(x) = (f(x) - g(x), so
f(x) - g(x)
= x² + 5x + 6 - (x + 3) ← distribute by - 1
= x² + 5x + 6 - x - 3 ← collect like terms
= x² + 4x + 3
---------------------------------------------------
(f • g)(x)
= f(x) × g(x)
= (x² + 5x + 6)(x + 3)
Each term in the second factor is multiplied by each term in the first factor, that is
x²(x + 3) + 5x(x + 3) + 6(x + 3) ← distribute parenthesis
= x³ + 3x² + 5x² + 15x + 6x + 18 ← collect like terms
= x³ + 8x² + 21x + 18
---------------------------------------------------------------
(
)(x)
= 
=
← factor the numerator
=
← cancel common factor (x + 3) on numerator/ denominator
= x + 2
Answer:
we have the equation y = (1/2)*x + 4.
now, any equation that passes through the point (4, 6) will intersect this line, so if we have an equation f(x), we must see if:
f(4) = 6.
if f(4) = 6, then f(x) intersects the equation y = (1/2)*x + 4 in the point (4, 6).
If we want to construct f(x), an easy example can be:
f(x) = y = k*x.
such that:
6 = k*4
k = 6/4 = 3/2.
then the function
f(x) = y= (3/2)*x intersects the equation y = (1/2)*x + 4 in the point (4, 6)
24 / 4 = 6
6 x 9 = 54
there will be 54 catfish
Answer:
3
Step-by-step explanation: