1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ollegr [7]
3 years ago
7

Determine whether the value of each power is positive or negative.

Mathematics
1 answer:
Leona [35]3 years ago
4 0

Answer:

Positive: (-3)4,(-1)2,(-4)8

Negative:(-10)5,(-2)9,(-6)3

Step-by-step explanation:

You might be interested in
What is the area of a triangle with side lengths 13-14-15?
Novosadov [1.4K]

84. Area of a triangle is (base x height) / 2

3 0
3 years ago
Five plus one multiplied by ten eaquals 5 1x10=
faust18 [17]
By order of operation
5+1x10
5+10
15

By normal solving
5+1x10
6x10
60
3 0
3 years ago
La potencia que se obtiene de elevar a un mismo exponente un numero racional y su opuesto es la misma verdadero o falso?
malfutka [58]

Answer:

Falso.

Step-by-step explanation:

Sea d = \frac{a}{b} un número racional, donde a, b \in \mathbb{R} y b \neq 0, su opuesto es un número real c = -\left(\frac{a}{b} \right). En el caso de elevarse a un exponente dado, hay que comprobar cinco casos:

(a) <em>El exponente es cero.</em>

(b) <em>El exponente es un negativo impar.</em>

(c) <em>El exponente es un negativo par.</em>

(d) <em>El exponente es un positivo impar.</em>

(e) <em>El exponente es un positivo par.</em>

(a) El exponente es cero:

Toda potencia elevada a la cero es igual a uno. En consecuencia, c = d = 1. La proposición es verdadera.

(b) El exponente es un negativo impar:

Considérese las siguientes expresiones:

d' = d^{-n} y c' = c^{-n}

Al aplicar las definiciones anteriores y las operaciones del Álgebra de los números reales tenemos el siguiente desarrollo:

d' = \left(\frac{a}{b} \right)^{-n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{-n}

d' = \left(\frac{a}{b} \right)^{(-1)\cdot n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{(-1)\cdot n}

d' = \left[\left(\frac{a}{b} \right)^{-1}\right]^{n}y c' = \left[(-1)^{-1}\cdot \left(\frac{a}{b} \right)^{-1}\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c = (-1)^{n}\cdot \left(\frac{b}{a} \right)^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{b}{a} \right)\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[-\left(\frac{b}{a} \right)\right]^{n}

Si n es impar, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = - \left(\frac{b}{a} \right)^{n}

Puesto que d' \neq c', la proposición es falsa.

(c) El exponente es un negativo par.

Si n es par, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = \left(\frac{b}{a} \right)^{n}

Puesto que d' = c', la proposición es verdadera.

(d) El exponente es un positivo impar.

Considérese las siguientes expresiones:

d' = d^{n} y c' = c^{n}

d' = \left(\frac{a}{b}\right)^{n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = (-1)^{n}\cdot \left(\frac{a}{b} \right)^{n}

Si n es impar, entonces:

d' = \left(\frac{a}{b} \right)^{n} y c' = - \left(\frac{a}{b} \right)^{n}

(e) El exponente es un positivo par.

Considérese las siguientes expresiones:

d' = \left(\frac{a}{b} \right)^{n} y c' = \left(\frac{a}{b} \right)^{n}

Si n es par, entonces d' = c' y la proposición es verdadera.

Por tanto, se concluye que es falso que toda potencia que se obtiene de elevar a un mismo exponente un número racional y su opuesto es la misma.

3 0
3 years ago
I NEED HELP PLEASE <br> ITS DUE SOOM
tekilochka [14]

Answer:

Tyler is correct. The temperature dropped at a rate of about 4° per hour between 4 and 6, while the temperature dropped at about 2.25° per hour between 6 and 10.

Edit: Explanation

The question is asking about which window of time had a <em>faster</em> decline in temperature, not a larger total change in temperature.

In a 2 hour timeframe, the temperature dropped 8°. (4-6 PM)

In a separate 4 hour timeframe, the temperature dropped 9°. (6-10 PM)

To find which window had a faster change in temp, I took the total temperature drop for each timeframe, then divided it by the number of hours each drop took.

8° / 2 = 4° per hour for 4-6 PM

9° / 4 = 2.25° per hour from 6-10 PM

Since the speed at which the temperature dropped per hour was greater from 4-6 PM than 6-10 PM, Tyler was correct.

6 0
3 years ago
Read 2 more answers
A person is walking at a rate of 9 feet every 4 seconds.(b) Given the rate in (a), how far would this
Crank

Answer:

2.25 feet

31.5 feet

Step-by-step explanation:

Given that the person travels 9 feet every 4 seconds, it means that in one second, the distance walked

= 9/4

= 2.25 feet

If the person walks 2.25 feet in a second then in 14 seconds, the distance walked

= 2.25*14/1

= 31.5 feet

8 0
3 years ago
Other questions:
  • Will give 25 points and brainliest answer if correct
    12·1 answer
  • it cost a faimly 305.00 to buy a 11ft by 14 ft rug if the cost is porpotional to the area what will it cost the family to buy a
    14·1 answer
  • the length of a rectangle is 5ft longer than it's width. if the perimeter of the rectangle is 34ft, find it's area?
    11·1 answer
  • Bob and his friend bill have the same birthday,but bob is 3 years older than bill.let the variable x represent bobs age and y re
    7·1 answer
  • Your friend spent $7 in two days on lunch. He says that
    7·1 answer
  • Thee vertex of a parabola is (-5,2), and its focus is (-1,2). What is the standard form of the parabola?​
    10·2 answers
  • Pls guys help me pls pls :(​
    14·1 answer
  • .
    11·1 answer
  • Heyy Answer please and explain
    13·1 answer
  • Whats 3.24 X 10^-5 in standard form?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!