Answer:
1. 625,000 J
2. 100 J
4. 5 kg
5. √5 ≈ 2.236 m/s
Step-by-step explanation:
You should be aware that the SI derived units of Joules are equivalent to kg·m²/s².
To reduce confusion between <em>m</em> for mass and m for meters, we'll use an <em>italic m</em> for mass.
In each case, the "find" variable is what's left after we put the numbers into the formula. It is what the question is asking for. The "given" values are the ones in the problem statement and are the values we put into the formula. The formula is the same in every case.
__
1. KE = (1/2)<em>m</em>v² = (1/2)(2000 kg)(25 m/s)² = 625,000 kg·m²/s² = 625,000 J
__
2. KE = (1/2)<em>m</em>v² = (1/2)(0.5 kg)(20 m/s)² = 100 kg·m²/s² = 100 J
__
4. KE = (1/2)<em>m</em>v²
250 J = (1/2)<em>m</em>(10 m/s)² = 50 m²/s²
(250 kg·m²/s²)/(50 m²/s²) = <em>m</em> = 5 kg
__
5. KE = (1/2)<em>m</em>v²
2000 kg·m²/s² = (1/2)(800 kg)v²
(2000 kg·m²/s²)/(400 kg) = v² = 5 m²/s²
v = √5 m/s ≈ 2.236 m/s
Answer:
D. We can label the rational numbers with strings from the set (1, 2, 3, 4, 5, 6, 7, 8, 9, / -) by writing down the string that represents that rational number in its simplest form. As the labels are unique, it follows that the set of rational numbers is countable.
Step-by-step explanation:
The label numbers are rational if they are integers. The whole number subset is rational which is written by the string. The sets of numbers are represented in its simplest forms. The rational numbers then forms numbers sets which are countable.
Answer:
the answer is 7/9
Step-by-step explanation:
Answer:
the statement which is not true is
~All Irrational Numbers are real Numbers