1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sunny_sXe [5.5K]
3 years ago
15

Calculate the size of angle x. the sides are 8cm, 11cm and 15cm

Mathematics
2 answers:
klio [65]3 years ago
8 0

Answer: 19.93

Step-by-step explanation:

LiRa [457]3 years ago
7 0
The answer is 19.93 hope this helps you
You might be interested in
Nicholas has a collection of books. He has 115 fantasy and science fiction books. These books are 46% of his collection. How man
Anit [1.1K]

Given that Nicholas has a 115 fantasy and science fiction books which is 46% of his collection.

Now we have to find what is total number of books in his collection.

Let number of books in Nicholas collection = x

then number of fantasy and science fiction books = 46% of x = 0.46x


We already know that he has 115 fantasy and science fiction books, so both values will be equal and give equation:

0.46x=115

now we can solve this equation to find the answer.

x=\frac{115}{0.46}

x= 250

Hence final answer is:

Nicholas has 250 books in his collection.

6 0
4 years ago
Read 2 more answers
A random variable X with a probability density function () = {^-x > 0
Sliva [168]

The solutions to the questions are

  • The probability that X is between 2 and 4 is 0.314
  • The probability that X exceeds 3 is 0.199
  • The expected value of X is 2
  • The variance of X is 2

<h3>Find the probability that X is between 2 and 4</h3>

The probability density function is given as:

f(x)= xe^ -x for x>0

The probability is represented as:

P(x) = \int\limits^a_b {f(x) \, dx

So, we have:

P(2 < x < 4) = \int\limits^4_2 {xe^{-x} \, dx

Using an integral calculator, we have:

P(2 < x < 4) =-(x + 1)e^{-x} |\limits^4_2

Expand the expression

P(2 < x < 4) =-(4 + 1)e^{-4} +(2 + 1)e^{-2}

Evaluate the expressions

P(2 < x < 4) =-0.092 +0.406

Evaluate the sum

P(2 < x < 4) = 0.314

Hence, the probability that X is between 2 and 4 is 0.314

<h3>Find the probability that the value of X exceeds 3</h3>

This is represented as:

P(x > 3) = \int\limits^{\infty}_3 {xe^{-x} \, dx

Using an integral calculator, we have:

P(x > 3) =-(x + 1)e^{-x} |\limits^{\infty}_3

Expand the expression

P(x > 3) =-(\infty + 1)e^{-\infty}+(3+ 1)e^{-3}

Evaluate the expressions

P(x > 3) =0 + 0.199

Evaluate the sum

P(x > 3) = 0.199

Hence, the probability that X exceeds 3 is 0.199

<h3>Find the expected value of X</h3>

This is calculated as:

E(x) = \int\limits^a_b {x * f(x) \, dx

So, we have:

E(x) = \int\limits^{\infty}_0 {x * xe^{-x} \, dx

This gives

E(x) = \int\limits^{\infty}_0 {x^2e^{-x} \, dx

Using an integral calculator, we have:

E(x) = -(x^2+2x+2)e^{-x}|\limits^{\infty}_0

Expand the expression

E(x) = -(\infty^2+2(\infty)+2)e^{-\infty} +(0^2+2(0)+2)e^{0}

Evaluate the expressions

E(x) = 0 + 2

Evaluate

E(x) = 2

Hence, the expected value of X is 2

<h3>Find the Variance of X</h3>

This is calculated as:

V(x) = E(x^2) - (E(x))^2

Where:

E(x^2) = \int\limits^{\infty}_0 {x^2 * xe^{-x} \, dx

This gives

E(x^2) = \int\limits^{\infty}_0 {x^3e^{-x} \, dx

Using an integral calculator, we have:

E(x^2) = -(x^3+3x^2 +6x+6)e^{-x}|\limits^{\infty}_0

Expand the expression

E(x^2) = -((\infty)^3+3(\infty)^2 +6(\infty)+6)e^{-\infty} +((0)^3+3(0)^2 +6(0)+6)e^{0}

Evaluate the expressions

E(x^2) = -0 + 6

This gives

E(x^2) = 6

Recall that:

V(x) = E(x^2) - (E(x))^2

So, we have:

V(x) = 6 - 2^2

Evaluate

V(x) = 2

Hence, the variance of X is 2

Read more about probability density function at:

brainly.com/question/15318348

#SPJ1

<u>Complete question</u>

A random variable X with a probability density function f(x)= xe^ -x for x>0\\ 0& else

a. Find the probability that X is between 2 and 4

b. Find the probability that the value of X exceeds 3

c. Find the expected value of X

d. Find the Variance of X

7 0
2 years ago
What is the exact circumference of a circle with a radius of 15 cm? 10πcm 15πcm 30πcm 60πcm WIIL GIVE BRAINLIEST
ddd [48]

Answer:

(C) 30πcm

Step-by-step explanation:

In order to find circumference you use the formula C (circumference)=2(pi)(r) in which r is the radius. In this case, two and 15 are thirty so to find the circumference all you have is the equation 30 times pi centimeters is equal to the Circumference.

5 0
4 years ago
Read 2 more answers
HELP PLEASE DUE IN 3 MINUTES
Thepotemich [5.8K]
C. 7.

Hope this helps!
5 0
3 years ago
Read 2 more answers
A local car wash is inviting customers to join the concierge club
Ghella [55]

Answer:

i guess this question miss the options to follow.

In any case the answer  

You can see that 6 washes is 30 dollars so that would make each wash $5 and all other answers can be proven wrong or not proven to be true.

good luck

7 0
3 years ago
Other questions:
  • Please help me ASAP
    12·2 answers
  • Revenues= 27000 expenses= 18000 net income?
    9·1 answer
  • Which fraction is equal to 5/6? 8/22, 25/30, 5/15?
    6·1 answer
  • I need help this math problem ​
    11·1 answer
  • Solve the equation: 12+3/4x=14
    8·2 answers
  • 4 men and 6 woman can complete a work in 8 days. while 3 men and 7 woman can complete it in 10 days. in how many days will 10 wo
    11·1 answer
  • I don"t remember how to do this, I just need where this negative fraction belong to.​
    12·2 answers
  • HELP PLEASE AND THANK YOU 1JAAB
    6·1 answer
  • Malia tried to prove that cos(0) =sin(90°-0) using the following diagram. her proof is not correct
    9·1 answer
  • PLSS HELP
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!