Answer:
Since Darcie wants to crochet a minimum of 3 blankets and she crochets at a rate of 1/5 blanket per day, we can determine how many days she will need to crochet a minimum of 3 blankets following the next steps:
- Finding the number of days needed to crochet one (1) blanket:
\begin{gathered}1=\frac{1}{5}Crochet(Day)\\Crochet(Day)=5*1=5\end{gathered}
1=
5
1
Crochet(Day)
Crochet(Day)=5∗1=5
So, she can crochet 1 blanket every 5 days.
- Finding the number of days needed to crochet three (3) blankets:
If she needs 5 days to crochet 1 blanket, to crochet 3 blankets she will need 15 days because:
\begin{gathered}DaysNeeded=\frac{NumberOfBlankets}{Rate}\\\\DaysNeeded=\frac{3}{\frac{1}{5}}=3*5=15\end{gathered}
DaysNeeded=
Rate
NumberOfBlankets
DaysNeeded=
5
1
3
=3∗5=15
- Writing the inequality
If she has 60 days to crochet a minimum of 3 blankets but she can complete it in 15 days, she can skip crocheting 45 days because:
AvailableDays=60-RequiredDaysAvailableDays=60−RequiredDays
AvailableDays=60-15=45DaysAvailableDays=60−15=45Days
So, the inequality will be:
s\leq 45s≤45
The inequality means that she can skip crocheting a maximum of 45 days since she needs 15 days to crochet a minimum of 3 blankets.
Have a nice day!
Answer:
First question --> C) 8.5h
Second question --> D) 2
Step-by-step explanation:
First question
Terry earns $10 per hour
Jill earns 20% less which is $2 less
Jill earns $8 per hour
Jerry earns $0.50 more per hour than Jill
Jerry earns $8.50 per hour
Second question
x = 2
y = 4
(2x + 3y) / 4 - 2 = ?
Use PEMDAS
so Parentheses first, then divide, then subtract
So.... (2x + 3y) = (2*2 + 3*4) = (4 + 12) = 16
Then divide
16/4 = 4
Then subtract
4 - 2 = 2
Answer:
The answer is below
Step-by-step explanation:
Let S denote syntax errors and L denote logic errors.
Given that P(S) = 36% = 0.36, P(L) = 47% = 0.47, P(S ∪ L) = 56% = 0.56
a) The probability a program contains both error types = P(S ∩ L)
The probability that the programs contains only syntax error = P(S ∩ L') = P(S ∪ L) - P(L) = 56% - 47% = 9%
The probability that the programs contains only logic error = P(S' ∩ L) = P(S ∪ L) - P(S) = 56% - 36% = 20%
P(S ∩ L) = P(S ∪ L) - [P(S ∩ L') + P(S' ∩ L)] =56% - (9% + 20%) = 56% - 29% = 27%
b) Probability a program contains neither error type= P(S ∪ L)' = 1 - P(S ∪ L) = 1 - 0.56 = 0.44
c) The probability a program has logic errors, but not syntax errors = P(S' ∩ L) = P(S ∪ L) - P(S) = 56% - 36% = 20%
d) The probability a program either has no syntax errors or has no logic errors = P(S ∪ L)' = 1 - P(S ∪ L) = 1 - 0.56 = 0.44
<span>7w+5=3w-15
7w-3w=-15-5
4w=-20
w=-5</span>
Answer:D) 0.6375
Step-by-step explanation:
See, the probability that Kevin would inherit diabetes is 0.75
The accuracy of this test is 0.85
See as there is 85% chance of that the test will make right prediction so 85% of 0.75 is that probability that Kevin has diabetes and test will predict it correctly.
85% of 0.75 is 0.75*0.85
= 0.6375
Hope it helps!!!