Answer: P₂=0.44 atm
Explanation:
For this problem, we are dealing with temperature and pressure. We will need to use Gay-Lussac's Law.
Gay-Lussac's Law: 
First, let's do some conversions. Anytime we deal with the Ideal Gas Law and the different laws, we need to make sure our temperature is in Kelvins. Since T₂ is 64°C, we must change it to K.
64+273K=337K
Now, it may be uncomfortable to use kPa instead of atm, so let's convert kPa to atm.

Since our units are in atm and K, we can use Gay-Lussac's Law to find P₂.


P₂=0.44 atm
Answer:
9 days, or 3 half-lives
Explanation:
5.2x10^5=520000
6.5x10^4=65000
65000/520000=1/8, or 3 half-lives
3x3=9 days
I'm not the greatest at Chem but this seems more like math than Chem :)
Answer:
q = 38,5 kJ
Explanation:
In its melting point, at 0°C, water is liquid. The boiling point of water is 100°C. It is possible to estimate the heat you required to raise the temperature of water from 0°C to 100°C using:
q = C×m×ΔT
Where C is specific heat of water (4,184J/g°C), m is mass of water (92,0g) and ΔT is change in temperature (100°C-0°C = 100°C)
Replacing:
q = 4,184J/g°C×92,0g×100°C
q = 38493 J, in kilojoules:
<em>q = 38,5 kJ</em>
<em></em>
I hope it helps!
Answer:
The retention factor of an ion is 0.10 .
Explanation:
Retention factor is defined as ratio of distance of distance traveled by solute to the distance traveled by solvent on chromatogram.

We have:


The retention factor of an ion :

The last option, fossil fuels are non-renewable sources.