B. 2h+4
"Worked four hours MORE"
More symbolizes addition
"TWICE the number of hours"
Twice means multiple by two - two times a number
Answer:
The answer is -22
Step-by-step explanation:
remove the parentheses then you have 11 * -2 = -22
I am happy to assist :)
Answer:
P = 0.006
Step-by-step explanation:
Given
n = 25 Lamps
each with mean lifetime of 50 hours and standard deviation (SD) of 4 hours
Find probability that the lamp will be burning at end of 1300 hours period.
As we are not given that exact lamp, it means we have to find the probability where any of the lamp burning at the end of 1300 hours, So we have
Suppose i represents lamps
P (∑i from 1 to 25 (
> 1300)) = 1300
= P(
>
) where
represents mean time of a single lamp
= P (Z>
) Z is the standard normal distribution which can be found by using the formula
Z = Mean Time (
) - Life time of each Lamp (50 hours)/ (SD/
)
Z = (52-50)/(4/
) = 2.5
Now, P(Z>2.5) = 0.006 using the standard normal distribution table
Probability that a lamp will be burning at the end of 1300 hours period is 0.006
Answer:
12
Step-by-step explanation:
A rhombus is a parallelogram with all four sides equal.
Its diagonals are perpendicular.
Each of the triangles formed by the diagonals and the sides are congruent, so the area of the rhombus is 4 times the area of one of the triangles.
Since the short diagonal is given as 4, each of the triangles can be viewed as having a base of 2. Each triangle's height, h, then is one half the length of the long diagonal.
The are of one of the triangles is 1/2 (base)(height)=(1/2)(2)h
The area of the rhombus is then
4(1/2)(2)h=24
Solving for h gives
h=6
This makes the length of the long diagonal 2h=12
The technique of matrix isolation involves condensing the substance to be studied with a large excess of inert gas (usually argon or nitrogen) at low temperature to form a rigid solid (the matrix). The early development of matrix isolation spectroscopy was directed primarily to the study of unstable molecules and free radicals. The ability to stabilise reactive species by trapping them in a rigid cage, thus inhibiting intermolecular interaction, is an important feature of matrix isolation. The low temperatures (typically 4-20K) also prevent the occurrence of any process with an activation energy of more than a few kJ mol-1. Apart from the stabilisation of reactive species, matrix isolation affords a number of advantages over more conventional spectroscopic techniques. The isolation of monomelic solute molecules in an inert environment reduces intermolecular interactions, resulting in a sharpening of the solute absorption compared with other condensed phases. The effect is, of course, particularly dramatic for substances that engage in hydrogen bonding. Although the technique was developed to inhibit intermolecular interactions, it has also proved of great value in studying these interactions in molecular complexes formed in matrices at higher concentrations than those required for true isolation.