Answer:
2/25
Step-by-step explanation:
Answer:
The average value of
over the interval
is
.
Step-by-step explanation:
Let suppose that function
is continuous and integrable in the given intervals, by integral definition of average we have that:
(1)
(2)
By Fundamental Theorems of Calculus we expand both expressions:
(1b)
(2b)
We obtain the average value of
over the interval
by algebraic handling:
![F(5) - F(3) +[F(3)-F(-2)] = 40 + (-30)](https://tex.z-dn.net/?f=F%285%29%20-%20F%283%29%20%2B%5BF%283%29-F%28-2%29%5D%20%3D%2040%20%2B%20%28-30%29)



The average value of
over the interval
is
.
Answer:
y = 2(x + 3)² - 4
Step-by-step explanation:
The equation of a parabola in vertex form is
y = a(x - h)² + k
where (h, k) are the coordinates of the vertex and a is a multiplier
Using the method of completing the square
y = 2x² + 12x + 14 ← factor out 2 from the first 2 terms
= 2(x² + 6x) + 14
To complete the square
add/subtract ( half the coefficient of the x- term)² to x² + 6x
y = 2(x² + 2(3)x + 9 - 9 ) + 14
= 2(x + 3)² - 18 + 14
= 2(x + 3)² - 4 ← in vertex form
I think it would be be because you’re actually saving a little bit more amount of money you’re paying a dollar and would say two cent for each bar
y=1 is the answer, there is no slope, so the formula y=mx+b turns into y=b, since 1 is the intercept 1 is b.