A fraction that is equivalent to 32.029 would be 32 and 29/1000th. This is because after the decimal, you count the places in which the numbers are and use the last digit, in this case it is 9, and and it is in the thousandths place. The fraction form would be 32029/1000th.
Answer:
1x0
2 x 11
1x0
Hope this helps! :) Please rate brainliest
i’m unsure on how to do this, i’m sorry
Given that
Sin θ = a/b
LHS = Sec θ + Tan θ
⇛(1/Cos θ) + (Sin θ/ Cos θ)
⇛(1+Sin θ)/Cos θ
We know that
Sin² A + Cos² A = 1
⇛Cos² A = 1-Sin² A
⇛Cos A =√(1-Sin² A)
LHS = (1+Sin θ)/√(1- Sin² θ)
⇛ LHS = {1+(a/b)}/√{1-(a/b)²}
= {(b+a)/b}/√(1-(a²/b²))
= {(b+a)/b}/√{(b²-a²)/b²}
= {(b+a)/b}/√{(b²-a²)/b}
= (b+a)/√(b²-a²)
= √{(b+a)(b+a)/(b²-a²)}
⇛ LHS = √{(b+a)(b+a)/(b+a)(b-a)}
Now, (x+y)(x-y) = x²-y²
Where ,
On cancelling (b+a) then
⇛LHS = √{(b+a)/(b-a)}
⇛RHS
⇛ LHS = RHS
Sec θ + Tan θ = √{(b+a)/(b-a)}
Hence, Proved.
<u>Answer</u><u>:</u> If Sinθ=a/b then Secθ+Tanθ=√{(b+a)/(b-a)}.
<u>also</u><u> read</u><u> similar</u><u> questions</u><u>:</u><u>-</u> i) sin^2 A sec^2 B + tan^2 B cos^2 A = sin^2A + tan²B..
brainly.com/question/12997785?referrer
Sec x -tan x sin x =1/secx Help me prove it..
brainly.com/question/20791199?referrer