1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kiruha [24]
3 years ago
9

A star is measured to be 24 kiloparsecs from Earth. A kiloparsec is 1000 parsecs. A parsec is 3.26 light-years. How many light-y

ears away is this star?
Mathematics
1 answer:
babymother [125]3 years ago
6 0

Answer:

Hey there!

The star is 24(1000), or 24000 parsecs away.

The star is 24000(3.26), or 86400 light-years away.

Let me know if this helps :)

You might be interested in
How to find the derivative of cos^2x? i seem to be confused.
slamgirl [31]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/2927231

————————

You can actually use either the product rule or the chain rule for this one. Observe:

•  Method I:

y = cos² x

y = cos x · cos x


Differentiate it by applying the product rule:

\mathsf{\dfrac{dy}{dx}=\dfrac{d}{dx}(cos\,x\cdot cos\,x)}\\\\\\
\mathsf{\dfrac{dy}{dx}=\dfrac{d}{dx}(cos\,x)\cdot cos\,x+cos\,x\cdot \dfrac{d}{dx}(cos\,x)}


The derivative of  cos x  is  – sin x. So you have

\mathsf{\dfrac{dy}{dx}=(-sin\,x)\cdot cos\,x+cos\,x\cdot (-sin\,x)}\\\\\\
\mathsf{\dfrac{dy}{dx}=-sin\,x\cdot cos\,x-cos\,x\cdot sin\,x}


\therefore~~\boxed{\begin{array}{c}\mathsf{\dfrac{dy}{dx}=-2\,sin\,x\cdot cos\,x}\end{array}}\qquad\quad\checkmark

—————

•  Method II:

You can also treat  y  as a composite function:

\left\{\!
\begin{array}{l}
\mathsf{y=u^2}\\\\
\mathsf{u=cos\,x}
\end{array}
\right.


and then, differentiate  y  by applying the chain rule:

\mathsf{\dfrac{dy}{dx}=\dfrac{dy}{du}\cdot \dfrac{du}{dx}}\\\\\\
\mathsf{\dfrac{dy}{dx}=\dfrac{d}{du}(u^2)\cdot \dfrac{d}{dx}(cos\,x)}


For that first derivative with respect to  u, just use the power rule, then you have

\mathsf{\dfrac{dy}{dx}=2u^{2-1}\cdot \dfrac{d}{dx}(cos\,x)}\\\\\\
\mathsf{\dfrac{dy}{dx}=2u\cdot (-sin\,x)\qquad\quad (but~~u=cos\,x)}\\\\\\
\mathsf{\dfrac{dy}{dx}=2\,cos\,x\cdot (-sin\,x)}


and then you get the same answer:

\therefore~~\boxed{\begin{array}{c}\mathsf{\dfrac{dy}{dx}=-2\,sin\,x\cdot cos\,x}\end{array}}\qquad\quad\checkmark


I hope this helps. =)


Tags:  <em>derivative chain rule product rule composite function trigonometric trig squared cosine cos differential integral calculus</em>

3 0
3 years ago
Can someone please help me ​
mart [117]

Answer:

x = 25

Step-by-step explanation:

3x = 75

divide both sides by 3

x = 25

5 0
2 years ago
Help please?!?!?!?!?!?!
svp [43]

slope is change in y over change in x

 use 2 points from the table so -3,-21 and -6,-39

change in Y: -39 - -21 = -18

change in x = -6 - -3 = -3

slope = -18/-3 = 6

slope = 6

8 0
2 years ago
Evaluate tan 11 pi/6
Nadusha1986 [10]

Answer:

tan 11 pi dived by 6 is equal to -118.307586549

4 0
2 years ago
5) Owen is planting a vegetable
Nana76 [90]
70 I’m pretty sure I’m correct sorry if I’m not:( I’m not to good with math
3 0
3 years ago
Read 2 more answers
Other questions:
  • Morgansville and newton are 2 miles apart. On map, the two cities are 7 inches apart. What is the map scale
    10·1 answer
  • At an online bookstore, Kendra bought 4 copies of the same book for the members of her book club. She got free shipping because
    13·1 answer
  • Graph this function:<br> y - 1 = 3(x + 8)
    7·1 answer
  • Math! 10 points! 7th grade work! Please help :) 3-6
    7·1 answer
  • PLEASE HELP ME REALLY QUICK
    7·2 answers
  • Please help me on this, thank u
    7·1 answer
  • Use the value of the discriminant to determine the type of roots for x²-3x+1=0
    10·1 answer
  • Identify m angle QRS.<br> PLS HELP!
    14·2 answers
  • PLEASE HELP FAST!! I CANNOT GET THIS WRONG!!!!
    6·1 answer
  • Tìm x a)<br> 4x^2-12x=-9
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!