Taking

and differentiating both sides with respect to

yields
![\dfrac{\mathrm d}{\mathrm dx}\bigg[3x^2+y^2\bigg]=\dfrac{\mathrm d}{\mathrm dx}\bigg[7\bigg]\implies 6x+2y\dfrac{\mathrm dy}{\mathrm dx}=0](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cbigg%5B3x%5E2%2By%5E2%5Cbigg%5D%3D%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cbigg%5B7%5Cbigg%5D%5Cimplies%206x%2B2y%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dx%7D%3D0)
Solving for the first derivative, we have

Differentiating again gives
![\dfrac{\mathrm d}{\mathrm dx}\bigg[6x+2y\dfrac{\mathrm dy}{\mathrm dx}\bigg]=\dfrac{\mathrm d}{\mathrm dx}\bigg[0\bigg]\implies 6+2\left(\dfrac{\mathrm dy}{\mathrm dx}\right)^2+2y\dfrac{\mathrm d^2y}{\mathrm dx^2}=0](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cbigg%5B6x%2B2y%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dx%7D%5Cbigg%5D%3D%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cbigg%5B0%5Cbigg%5D%5Cimplies%206%2B2%5Cleft%28%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dx%7D%5Cright%29%5E2%2B2y%5Cdfrac%7B%5Cmathrm%20d%5E2y%7D%7B%5Cmathrm%20dx%5E2%7D%3D0)
Solving for the second derivative, we have

Now, when

and

, we have
Answer:
4 dollars and 20 cents
Step-by-step explanation:
5.00-.80=4.20
let x=k
D=dog
T=Taxes
I=increase P=population
solve k
d=23,000
t=2000
d=2.3e^
divide both sides by 2
after year is,2000+k2-2.3
=1.999.7
k2- 23,000=
k-x
or
k2-2
Answer:
triangle A= 1/2bh
1/2(18)(14)= 126
semi circle 3.14(9)^2 divided by 2 = 127.17
Triangle Area plus semi circle Area = 126+127.17= 253.17
Answer:
Step-by-step explanation:
a1=2/3
sequence is 2/3,3/4,4/5,...
for numerator a1=2
d=3-2=1
numerator of nth term=a1+(n-1)d=2+(n-1)×1=2+n-1=n+1
denominator = 1 more than numerator=n+1+1=n+2
so an=(n+1)/(n+2)
or for denominator a1=3,d=4-3=1
denominator of nth term=3+(n-1)×1=3+n-1=n+2
an=(n+1)/(n+2)